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ABSTRACT
A geolocated time series is a sequence of values associated with a

geolocation, such as measurements provided by a sensor installed

at a certain location. In this paper, we address the problem of hybrid
similarity joins over such geolocated time series. This operation re-

turns all pairs of geolocated time series that exhibit similar behavior

in the time series domain while also being closely located in space.

First, we propose algorithms for performing such join operations

using different types of indices, including spatial-only, time series-

only, and hybrid indices. Such centralized indexing schemes can

cope well with moderate data volumes but they face scalability is-

sues when the dataset size increases significantly. To overcome this

problem, we present a MapReduce-based processing scheme with

space-driven partitioning. Our parallel and distributed algorithm

leverages our hybrid index for geolocated time series to efficiently

execute similarity joins locally within each partition and minimize

the amount of data that needs to be shuffled between processing

nodes. An extensive experimental evaluation confirms that our ap-

proach can efficiently compute all matching pairs even for datasets

containing millions of geolocated time series.
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1 INTRODUCTION
Time series data is a treasure trove for a variety of mining and

monitoring applications both in industry (e.g., finance, public util-

ities) and in academia (e.g., astronomy, biology), while a rapidly

increasing bulk of such data is also generated on the Web and the

Internet of Things. Although indexing, analysis and exploration

of time series data has attracted a lot of interest from the database

and data mining communities [5, 8, 18], studying of geolocated time
series only lately has come under focus [7]. This refers to time se-

ries that are produced at, or associated with, a specific geolocation.

Analyzing such data can offer insights regarding trends and pat-

terns in many applications. Indeed, they are often used to identify

user check-in patterns in geosocial networks, weather or pollution

measurements from a sensor network, resource consumption in

households, fluctuations of house prices in real estate, and so on.

In this work, we focus on efficient evaluation of hybrid similarity
join queries between large datasets of geolocated time series. Con-

sider two such datasets containing time series of CO2 emissions

collected from two sensor networks R and S spread in different

locations over a given spatial region. A hybrid similarity join query

retrieves pairs of sensors (the first from R, the second from S) such
that both the distance between the locations of the two sensors and

the distance between the time series of their measurements do not

exceed certain given thresholds. Then, an environmentalist may

use the matching pairs to identify common patterns in nearby areas

and get a better insight about the sources of pollution, its spread,

etc. Similarly, check-ins in geosocial networks can also be modeled

as geolocated time series and analyzed with hybrid similarity join

queries. Results can indicate nearby venues with similar frequency

patterns, which may be used for social recommendations according

to time, place, activity, etc. Moreover, geolocated time series can

indicate water or gas consumption in households. A utility com-

panymay identify nearby customers who have similar consumption

profiles. Results may be used for customer segmentation, targeted

marketing, planning future network upgrades, etc.

A hybrid similarity join query aims to identify all pairs between
the two datasets qualifying to the criteria of spatial proximity and

time series similarity. Clearly, performing a pairwise comparison

among all pairs of objects in the two datasets is not an option when

their size is large. Hence, indexing them is indispensable for efficient

processing of such queries. Certainly, similarity search over indexed

time series is a well-studied topic and several schemes have been

proposed, like wavelet-based methods [6] or the family of iSAX
trees [4, 5, 18, 21]. Likewise, efficient methods for distance joins in

spatial databases also exist, usually over R-trees [3, 14].

https://doi.org/10.1145/3274895.3274949
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In this paper, our starting point is to employ such indices ei-

ther for time series-only (with iSAX) or spatial-only (using R-trees)

filtering of candidate pairs during query evaluation.We also take ad-

vantage of the BTSR-tree index [7], which enables combined search
over both the time series and the spatial information of candidates

and thus excels in pruning power. These algorithms concurrently

traverse those indices and identify subtrees that may contain can-

didate matches. However, this centralized approach has certain lim-

itations, as it cannot sustain examination of large datasets. Hence,

we further suggest a space-driven data partitioning scheme that

enables a parallel and distributed approach for hybrid similarity

joins. Following the MapReduce paradigm, our method leverages

any of the aforementioned indices to efficiently handle similarity

join queries locally within each partition. This is then combined

with an optimization that minimizes the amount of data transferred

between worker nodes at query time without false misses.

To the best of our knowledge, this is the first work to address

hybrid similarity join queries over large datasets of geolocated time

series. Our main contributions can be summarized as follows:

• We adapt state-of-the-art indices over such data in central-

ized settings and propose traversal methods that can prune

the search space and return answers without false misses.

• We suggest a space-driven partitioning method to distribute

large datasets in cluster infrastructures, thus enabling faster,

in-parallel evaluation of smaller similarity join tasks.

• We conduct an extensive experimental evaluation against

large data volumes of geolocated time series, confirming that

our methods can efficiently and correctly process hybrid

similarity join queries in these settings.

The rest of the paper is organized as follows. Section 2 reviews

related work. Section 3 describes the problem. Section 4 provides

background on two state-of-the-art index methods that we employ

in alternative similarity join strategies presented in Section 5. Sec-

tion 6 introduces a parallel and distributed approach for similarity

join over large datasets of geolocated time series. Section 7 reports

our experimental results, and Section 8 concludes the paper.

2 RELATEDWORK
Earlier approaches on time series indexing have leveraged multi-

resolution representations to gradually reduce time series dimen-

sionality with DiscreteWavelet Transform and then index the result-

ing coefficients [6, 15]. Current state-of-the-art indexing over time

series involves the indexable Symbolic Aggregate Approximation
(iSAX) family of trees, which are based on the Symbolic Aggregate
Approximation (SAX) representation of each time series [12]. After

the original iSAX tree introduced in [18], several extensions have

been proposed, including iSAX 2.0 [4] and iSAX2+ [5], which en-

able bulk loading of time series data and better handle the expensive

I/O operations caused by aggressive node splitting during index

construction. The ADS+ index [21] is an adaptive approach of iSAX,
built progressively while processing query workloads, thus spar-

ing much of the initial construction overhead. A comprehensive

overview over time series indexing schemes based on the SAX rep-

resentation is available in [13]. However, efficiently accommodating

spatial information in any such scheme is not straightforward.

With respect to spatial join queries, several methods have been

proposed, often based on the R-tree family of indices [1, 10]. In

particular, the spatial join algorithms over R
∗
-trees introduced in

[3] can minimize the CPU and I/O cost in searching. Multiway
spatial joins [14] generalize search over more than two R-trees.

Top-k spatial distance joins [16] employ R-tree-based spatial joins

in data blocks ordered by an objective score to retrieve k pairs of

objects with highest score. However, all such algorithms are applied

against spatial information only. Based on a similar observation

for answering a variety of queries over geolocated time series, in

[7] we proposed the BTSR-tree, a hybrid index based on the R-

tree, but having nodes that also store bounds over the time series

information in their underlying subtree. This index offers increased

pruning capabilities for queries involving both time series similarity

and spatial proximity. However, handling hybrid similarity joins is

not addressed in [7]; we develop such a method next in this paper.

Our current work on geolocated time series data is reminiscent

of related approaches in spatio-textual search. Spatio-textual joins
identify objects that are both spatially and textually close. In par-

ticular, the algorithm proposed in [2] uses a spatial partitioning

in conjunction with spatial joins over R-trees in order to batch

process such queries. MapReduce-based methods in [20] resolve

spatio-textual joins on spatially partitioned data. However, it should

be stressed that time series information is quite distinct from doc-

uments or keywords used in those works and certainly requires

a totally different processing paradigm. To the best of our knowl-

edge, ours is the first approach for processing similarity joins on

geolocated time series data.

3 PROBLEM DEFINITION
A time series is a time-ordered sequence of values T = {v1, . . . ,vn },
where vi is the value at the i-th time point and n is the length of

the series. Typically, as absolute values are usually less informa-

tive compared to the trends in a sequence, a z-normalization of

the amplitudes is applied [9], so that the transformed time series

approximately follow a standard Gaussian distribution N (0,1). We

assume that this is done in a preprocessing step, applied similarly

over all time series in a given dataset T . As in other prior works

like [18], we use the Euclidean distance to measure the similarity
between a pair of time series T and T ′ of equal length n:

dts (T ,T
′) =

√√ n∑
i=1

(T .vi −T
′.vi )

2. (1)

In this work, we specifically deal with time series that are addi-

tionally characterized by a location, denoted by T .loc . In the sequel,

when it is clear from the context, we also refer to such geolocated

time series as objects for brevity. Assuming a 2-dimensional space,

we further use the notation T .locx , T .locy to refer to the (x ,y)
coordinates of T ’s location. In the spatial domain, the proximity
between two geolocated time series T and T ′ is calculated using

the Euclidean distance of their respective locations:

dsp (T ,T
′) =

√
(T .locx −T ′.locx )2 + (T .locy −T ′.locy )2. (2)

We can now formally introduce our problem:

Definition 1 (Hybrid Similarity Join over Geolocated Time

Series). Given two sets of geolocated times series TR and TS , and two
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Figure 1: Hybrid similarity join over geolocated time series.

thresholds ϵsp and ϵts , the hybrid similarity join query returns all
pairs qualifying w.r.t. to both criteria on spatial proximity and time
series similarity, i.e.,

{(TR ,TS ) : TR ∈ TR ,TS ∈ TS ,dsp (TR ,TS ) ≤ ϵsp∧dts (TR ,TS ) ≤ ϵts }.

That is, this query searches for pairs of objects that are within

spatial distance at most ϵsp , while also their respective time series

do not deviate by more than ϵts . Spatial proximity is measured

in distance units (e.g., meters). As mentioned before, since the

(transformed) time series are z-normalized, values for parameter

ϵts are unitless and are typically expressed in standard deviations.

Example 1. Figure 1 depicts two sets of geolocated time series,
{R1, . . . ,R5} (in red bullets) and {S1, . . . ,S6} (in green squares) that
represent CO2 emissions collected by two sensor networks R and S
in an urban area during a day. Suppose that a similarity join query
over those two datasets specifies a distance radius ϵsp = 500meters to
identify nearby sensors and a maximum deviation of ϵts = 0.4 to find
similar CO2 patterns. Qualifying pairs {(R1,S5), (R3,S5), (R5,S2)} are
shown connected with dashed lines. Note that other pairs, e.g., (R4,S3),
may be even closer in space, but their time series deviate more than
the given ϵts , so they are filtered out. Besides, time series like those
in rejected pair (R3,S3) may have almost the same pattern, but their
locations are too far from each other to qualify for this query. □

4 PRELIMINARIES
Next, we provide some background information used in our pro-

posed methods for similarity joins over geolocated time series.

Specifically, we present the iSAX family of trees [4, 5, 18], which

can only index the time series information of each object and the

hybrid BTSR-tree [7]. The latter is essentially an R-tree built on the

spatial locations of the times series, but additionally summarizing

in each node the time series contained in its subtree.

4.1 SAX Representation of Time Series
The Symbolic Aggregate approXimation (SAX) is a multi-resolution

representation of a time series introduced in [18]. It can be de-

rived from its Piecewise Aggregate Approximation (PAA) [11, 19]

by quantizing the PAA segments on the v-axis. As exemplified in

Figure 2(a), a time series T2 is transformed to a PAA representa-

tion ofw=3 words with real-valued coefficients (the horizontal red

(a) SAX of a time series (b) MBTS for two sets of time series

Figure 2: SAX and MBTS representations over time series.

bars). To get a SAX representation for a time series, these coeffi-

cients are discretized along the v-axis using breakpoints (shown
with dashed lines) assuming a N (0,1) Gaussian distribution that

enables generation of equi-probable symbols for a given cardinality

(b = 4 symbols are used in this example). Interestingly, by using

bitwise representations for these symbols, coarser SAX values can

be obtained from more refined ones by simply ignoring trailing bits.

Importantly, the Euclidean distance between SAX representations

of two time series is guaranteed to be a lower bound with respect to

the Euclidean distance over the original time series. Formally, for

two time series T ,T ′ of equal length n using their respective SAX
words Tw ,T

′
w of sizew , it holds that:

dSAX (Tw ,T
′
w ) =

√
n

w

√√√ w∑
j=1

d2 (tj ,t
′
j ) ≤

√√ n∑
i=1

(T .vi −T
′.vi )

2

(3)

where d (tj ,t
′
j ) is the distance between symbols at the j-th position

of each SAX word. Comparing iSAXwords of different cardinality is

possible by promoting the iSAX representation of lower cardinality

to that of the larger, as the lower bound in Eq. 3 still holds.

4.2 The iSAX Family of Indices
Consider the dataset shown in Figure 3(a). By completely ignoring

the spatial locations and using the SAX representations of all time

series in this dataset, an iSAX index [18] can be built as illustrated

in Figure 3(d). The root node captures the complete iSAX space. It

does not contain any SAXwords, it only points to its children nodes

(in the worst case, their number is 2w). Each leaf has a pointer to a

disk file containing the raw time series that it represents. The leaf

itself also stores the iSAX word of highest cardinality among these

time series. An internal node designates a split in SAX space and is

created when the number of time series contained by a leaf node

exceeds a fixed capacity M . This split is binary and is made at a

given position j = 1..w of the SAX word using a round-robin policy,

so it always yields two children that differ on their j-th symbol

while replicating the rest from their parent node. In essence, the

SAX space represented by every node fully contains the union of

the SAX spaces of its subtree.

Searching for time series similar to a query q simply traverses

the iSAX tree, looking for a leaf node having the same iSAX word

as query q. The respective raw time series are fetched from disk

and a sequential scan identifies those matching with q.
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(a) Sample dataset with MBRs over objects

(b) Spatial-only R-tree index

(c) Hybrid BTSR-tree index

(d) iSAX index over time series only (subtrees under dash lines not shown)

Figure 3: Indexing schemes over geolocated time series.

4.3 Minimum Bounding Time Series
In [7], we introduced the notion of Minimum Bounding Time Series
(MBTS), which abstracts a set of time series T using a pair of bounds

that fully contain all of them. Figure 2(b) depicts an example of two

MBTSs for two disjoint sets of time series. Formally, given a set of

time series T , its MBTS consists of an upper bounding time series
B⊓ and a lower bounding time series B⊔, constructed by respectively
selecting the maximum and minimum of values at each time point

i ∈ {1, . . . ,n} among all time series in set T as follows:

B⊓ = {max

T ∈T
T .v1, . . . ,max

T ∈T
T .vn }

B⊔ = {min

T ∈T
T .v1, . . . , min

T ∈T
T .vn }

(4)

Note that both bounding time series have the same length n as

those enclosed within this MBTS.

4.4 The BTSR-tree Index
A BTSR-tree is constructed exactly as an R-tree [10] with respect to

the spatial contents of a geolocated time series dataset, as depicted

in the example of Figure 3. However, besides MBRs, nodes also

store MBTSs, shown as colored strips per node in Figure 3(c). Thus,

the search space can be efficiently pruned when evaluating hybrid

queries combining time series similarity with spatial proximity.

As in R-trees, each node of the BTSR-tree has at leastm and at

most M entries and stores the MBRs of its children. Additionally,

for each child, a node stores a pre-specified number of MBTSs, each

one enclosing all the time series indexed in its subtree. Each MBTS

is calculated according to Eq. 4. Construction and maintenance of

the BTSR-tree follow the procedures of the R-tree for data insertion,

deletion and node splitting. Objects (i.e., geolocated time series)

are inserted into leaf nodes and any resulting changes are propa-

gated upwards. Once the nodes have been populated, the MBTS of

each node are calculated bottom-up, relying on k-means clustering
according to their Euclidean distance in the time series domain.

The example in Figure 2(b) depicts the k = 2 MBTSs (as two bands

with a thick outline) obtained for a set of time series (shown as

thin polylines). In a BTSR-tree, each parent node receives all the

MBTSs of its children and computes its own k MBTSs. The process

continues upwards, until reaching the root.

5 CENTRALIZED SIMILARITY JOIN
A naïve approach to answer a hybrid similarity join query over

two geolocated time series TR ,TS would involve examination of all

possible pairs, i.e., calculating their Cartesian product TR × TS and

filtering each candidate pair with the two criteria. Clearly, such a

technique has limitations due to its quadratic processing cost and

cannot be realistically applied against datasets with more than a

few thousand objects each. Hence, we propose three index-based
techniques for answering hybrid similarity join queries:

• We describe a spatial-only filtering method that employs R-

trees over the locations of objects so as to identify candidate

pairs close enough in space. Afterwards, the time series of

each such candidate pair should also be checked on their

similarity to finally yield the exact answer (Section 5.1).

• We build iSAX indices over the time series information only

per dataset and we introduce a traversal method to facilitate

similarity search. Refinement over returned candidate pairs

by their spatial distance issues the final results (Section 5.2).

• We employ BTSR-trees that can jointly index the positional

and time series information of each object. We introduce

a hybrid similarity join algorithm that descends these two

BTSR-trees in tandem and can safely prune subtrees that

cannot possibly contribute any valid results (Section 5.3).

In each of these methods, one global index is created per dataset.

Hence, a centralized processor is responsible to maintain these

indices and access them when evaluating similarity join queries.

5.1 Spatial-Only Filtering using R-Trees
One possible approach to similarity join search over two datasets

TR ,TS of geolocated time series is to build an R-tree [10] per dataset

by organizing its spatial locations into a hierarchy of nested d-
dimensional rectangles. Each node corresponds to a disk page and

represents the MBR of its children. A leaf holds the MBR of its

contained geometries. The number of entries per node (excluding

the root) is between a lower boundm and a maximum capacityM .

With respect to hybrid similarity joins, we search over R-trees

using the spatial condition, exactly as in [3]. So, both R-trees are

concurrently traversed starting from their roots and recursively

examining their respective descendants only if the minimum dis-

tanceMINDIST of their MBRs [17] does not exceed parameter ϵsp .
Obviously, a pair of nodes breaking this spatial constraint cannot

possibly contain any qualifying results, so their respective subtrees

can be safely pruned. Once the leaf levels are reached, the candidate

pairs of raw time series are accessed and refined according to both

criteria in Definition 1 in order to issue the final results.
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5.2 Time Series-Only Filtering with iSAX
This method makes use of available iSAX indices over two datasets

TR ,TS , each concerning their respective time series as discussed in

Section 4.2. Each iSAX index solely indexes the time series part of a

dataset; their leaf entries point to the raw time series including their

location. Searching for similar objects starts from the root of each

tree and progressively descends by visiting nodes that may contain

candidate answers based on their similarity, strictly on the time

series domain, as listed in Algorithm 1. Without loss of generality,

we assume that either the trees have the same height, or the iSAX
for TR is less deep than the iSAX for TS .

Suppose that at a given iteration, node R in the first iSAX needs

to be checked against node S in the second iSAX. If neither of them
is leaf, the algorithm is recursively called against all combinations

of their children entries, provided that these are within distance ϵts
as computed by Eq. 1 (Lines 1-5). Once the leaf level is reached in the

first iSAX but not yet in the second iSAX (if they differ in height),

recursive calls examine that specific leaf of the former against each

of the children entries of the latter (Lines 6-8).

Eventually, when the leaf level is reached in both trees, we com-

pare each combination of their respective contents (Lines 9-13).

Each geolocated time series from leaf R of the first iSAX is checked

with its counterparts in leaf S of the second iSAX. Since raw time

series data is fully accessible at the leaf level (including locations),

refinement of candidates is based not only on their distance dts in
the time series domain, but also on their spatial distance dsp . If both
distances are below the respective constraints, then this specific

pair qualifies for the final result Q to the query. The algorithm

terminates once there are no remaining pairs of leaves to check.

Algorithm 1: SimJoinSAX (R,S ,ϵsp ,ϵts )

Input: Nodes R , S , spatial constraint ϵsp , time series constraint ϵts
Output: Set Q of pairs of geolocated time series satisfying constraints

1 if R is not leaf ∧ S is not leaf then ▷ internal nodes in both trees

2 foreach NR ∈ R .дetChildren () do
3 foreach NS ∈ S .дetChildren () do
4 if dSAX (NR, NS ) ≤ ϵts then ▷ compare SAX words

5 SimJoinSAX (NR, NS , ϵsp , ϵts )

6 else if R is leaf ∧ S is not leaf then ▷ trees of different height

7 foreach NS ∈ S .дetChildren () do
8 SimJoinSAX (R, NS , ϵsp , ϵts )

9 else if R is leaf ∧ S is leaf then ▷ leaf level in both trees

10 foreach TR ∈ R .дetChildren () do
11 foreach TS ∈ S .дetChildren () do
12 if dsp (TR,TS ) ≤ ϵsp ∧ dts (TR,TS ) ≤ ϵts then
13 Q ← Q ∪ {(TR,TS ) } ▷ add pair to result set

5.3 Hybrid Filtering using BTSR-Trees
This method makes use of a hybrid BTSR-tree index per dataset

TR ,TS of geolocated time series. Initially, let us assume that both

BTSR-trees have the same height. Exactly like the iSAX-based
method, search starts from the root of each tree and descends them

in tandem by checking their nodes pairwise, as listed in Algorithm 2.

In case that the currently examined entries R and S are internal

(directory) nodes, a nested-loop check finds which of their descen-

dants may contain candidate results (Lines 1-6). In particular, for

each child entry NR of node R, we calculate a buffer rectangle by ex-
panding its respective MBR by distance ϵsp . In case that this buffer

intersects with the MBR of entry NS from node S , whereas also
their MBTS do not deviate by more than ϵts , then search should

be recursively applied against those two entries NR ,NS . Clearly,

if neither of these criteria is met, those candidate entries cannot

possibly contain any matching time series.

Note that this step involves comparison between two MBTSs.

Consider two MBTSs B1 = (B⊔
1
,B⊓

1
) and B2 = (B⊔

2
,B⊓

2
), each con-

structed according to Eq. 4 over two disjoint subsets of time series

data. We compute their deviation dMBTS by first comparing the

lower bounding time series of the former with the upper bounding

time series of the latter per time point i ∈ {1, . . . ,n}, depending on

which of these two values is larger, i.e.:

δi =




B⊔
1
.vi − B

⊓
2
.vi , if B⊔

1
.vi ≥ B⊓

2
.vi

B⊔
2
.vi − B

⊓
1
.vi , if B⊔

2
.vi ≥ B⊓

1
.vi

0, otherwise

(5)

and we take the average Euclidean norm over these n differences:

dMBTS (B1,B2) =
1

n

√√ n∑
i=1

(δi )
2

(6)

Quite importantly, this measure is a lower bound of the Euclidean
distance dts (T1,T2) between two time seriesT1,T2 that are enclosed
in MBTSs B1,B2, respectively. Consider the situation at a given time

point i ∈ {1, . . . ,n}. In case that B⊔
1
.vi ≥ B⊓

2
.vi , it is straighforward

that T1.vi ≥ B⊔
1
.vi ≥ B⊓

2
.vi ≥ T2.vi by definition of the MBTS,

hence δ ′i = T1.vi −T2.vi ≥ δi . This also holds for the other branches
of Eq. 5. But, taking the Euclidean norm of these δ ′i values over
all time points expresses the time series similarity according to

Eq. 1. Overall, this confirms that dts (T1,T2) ≥ dMBTS (B1,B2), so
checking with MBTSs does not cause any false misses.

If both R and S are leaves, the algorithm retrieves all time series

from either leaf and checks every combination against both criteria

(Lines 10-14). If a time series from TR and a time series from TS are

close enough in space (i.e., less than ϵsp ) and also similar in the

time series domain by ϵts , this pair is issued as result.

Algorithm 2: SimJoinBTSR (R,S ,ϵsp ,ϵts )

Input: Nodes R , S , spatial constraint ϵsp , time series constraint ϵts
Output: Set Q of pairs of geolocated time series satisfying constraints

1 if R is not leaf ∧ S is not leaf then ▷ internal nodes in both trees

2 foreach NR ∈ R .дetChildren () do
3 NR .buf ← buf f er (NR .mbr , ϵsp ) ▷ expand MBR by ϵsp
4 foreach NS ∈ S .дetChildren do
5 if NR .buf ∩NS .mbr , ∅∧dMBTS (NR, NS ) ≤ ϵts then
6 SimJoinBTSR (NR, NS , ϵsp , ϵts )

7 else if R is leaf ∧S is not leaf then ▷ trees of different height

8 foreach NS ∈ S .дetChildren () do
9 SimJoinBTSR (R, NS , ϵsp , ϵts )

10 else if R is leaf ∧ S is leaf then ▷ leaf level in both trees

11 foreach TR ∈ R .дetChildren () do
12 foreach TS ∈ S .дetChildren () do
13 if dsp (TR,TS ) ≤ ϵsp ∧ dts (TR,TS ) ≤ ϵts then
14 Q ← Q ∪ {(TR,TS ) } ▷ add pair to result set
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Handling the case of BTSR-tree indices with different height is

handled as in R-trees [3]. Without loss of generality, let the first

BTSR-tree (over TR ) be shorter than the second BTSR-tree (over

TS ). Then, once a leaf entry R is reached in the former, compar-

isons are made against any subtrees under nodes NS in the latter

(Lines 7-9). In case that both criteria are met, we descend this lat-

ter BTSR-tree and recursively check for similarity joins between

its children entries with the same leaf entry R fixed in the first

BTSR-tree. Eventually, the leaf level in the second BTSR-tree will

be reached and refinement against the raw time series on both the

spatial and time series criteria can yield the final results.

6 DISTRIBUTED SIMILARITY JOIN
As any join query over large datasets, computing hybrid similarity

joins over millions of geolocated time series is a very demanding

task. Building a global index per dataset and applying any of the

methods in Section 5 still incurs excessive cost, as demonstrated in

our empirical tests (Section 7). To tackle scalability, we present a

parallel and distributed approach based on space-driven partitioning
(Section 6.1). We also describe an optimized, index-guided variant to
reduce the amount of data shuffled between workers (Section 6.2).

6.1 MapReduce Method with Spatial Partitioning
Typically, in MapReduce-based processing, both input datasets TR ,

TS should be divided into smaller chunks that may be efficiently

processed in a distributed fashion by a number of worker nodes.

In our case, distributing geolocated time series data by their spa-

tial location is straightforward and can be effectuated much faster

as opposed to a times series-based subdivision that may need to

examine long sequences. Our method employs a subdivision P

into disjoint partitions over the spatial area covering all locations in
either dataset TR , TS . Partitioning P is identical over both datasets.

Without loss of generality, we consider P as a uniform grid tessella-

tion into д ×д square equi-sized cells, but our method can be easily

adjusted to other space-driven subdivisions into disjoint regions

(e.g., quadtrees). Choosing a suitable grid granularity д over each

axis mostly depends on dataset size, but also on the number and

processing power of available nodes in cluster infrastructures.

The pseudocode listed in Algorithm 3 outlines the entire process.

It proceeds in two successive phases: (1) a local search per partition

and (2) cross-partition search by shuffling subsets of data between

neighboring partitions. In particular, we make use of distinct tiers
of blocks with increasingly finer spatial resolution (Figure 4):

1) Local search per partition (Lines 1-6): The first tier concerns

individual partitions, and the algorithm needs to check for

similarity join between those objects from TR and those from

TS contained in the same partitionp ∈ P. This is depicted for
a given partition (cell) p enclosed with dashed line segments

in Figure 4 over each of the two datasets.

2a) Cross-partition search in pairs of adjacent bands (Lines 7-

12): A collection B of spatial bands of width ϵsp is created

inwards along each side of every partition in P. Objects of

each dataset coming from adjacent bands across every pair

of neighboring partitions need to be checked against the

query criteria. For a given partition p, each of the four bands

created over TR must be compared with respective bands

Figure 4: Blocks in cross-partition search for a partition p.

created not in the same partition p for TS , but in each of the

four partitions sharing one common side with p. In Figure 4,

the pairs of respective bands are shown hatched with the

same colored pattern and are connected with curly arrows.

A set LB consisting of pairs of such adjacent bands indicates

those that must be probed across all partitions.

2b) Cross-partition search in pairs of boxes with one common cor-
ner (Lines 13-18): The finest tier concerns a set C of square

boxes of side ϵsp created at the corner of each partition in P.

Objects from either dataset contained in boxes having one

common corner need further probing (i.e., corner-wise in P),
and all pairs of such boxes are collected in set LC . As shown
in Figure 4, each box c created at the four corners of partition
p over TR should be checked against one equi-sized box over

TS ; this latter box belongs to a neighboring partition p′ , p,
which has only one common corner with p.

Since all blocks are purely space-driven, the rationale is that spa-

tial filtering comes first, whilst the time series criterion is checked

afterwards for any remaining candidate pairs. At each block level,

our method creates disjoint data chunks for subsets of objects lo-

cated in that block; this is applied against both datasets similarly

for partitions (Lines 2-3), bands (Lines 8-9), and boxes (Lines 14-15).
Furthermore, at each block tier, a local index is built for every

derived chunk. Interestingly, we may plug in any of the similarity

join methods suggested in Section 5. The same indexing scheme

must be used at each tier, i.e., either R-tree, iSAX, or BTSR-tree
(hereafter referred to as X-index). For partitions, such indices can

be suitably built in advance with a predefined subdivision P and

thus can be readily available for any similarity join query that

may specify varying values on parameters ϵsp and ϵts . In contrast,

indices over data contained in each of the bands listed in LB or each

corner box in LC have to be created at query time, since they clearly
rely on distance threshold ϵsp , which may vary among queries.

Once pairs of blocks need be checked at each tier (either LP
for partitions, or LB for bands, or LC for boxes), blockwiseSimJoin
(Lines 19-25) takes advantage of the created indices and applies the

respective method from Section 5 to return their results. Each pair

of blocks at any tier can be processed independently. Hence, for

a given partitioning P, once the query is submitted, the required

subsets and their indices can be prepared in a distributed fashion
and the respective block-wise checking can be evaluated in parallel.
For a given partition p (first tier), subsets from both datasets are

assigned to the same worker node. This policy is also applied in the

case of blocks that need to be checked: the worker responsible for

a given partition p receives the data and index concerning objects
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Algorithm 3: SimJoinMR (TR ,TS ,ϵsp ,ϵts ,X)

Input: dataset TR , dataset TS , spatial constraint ϵsp , time series

constraint ϵts , index method X (e.g., BTSR-tree or R-tree)

Output: Set Q of pairs of geolocated time series satisfying constraints

/* PHASE #1: local search per partition */

1 P ← space partitioning common for both datasets TR, TS

2 RP ← distribute TR and build a local X-index per partition p ∈ P
3 SP ← distribute TS and build a local X-index per partition p ∈ P
4 LP ← {(p, p ) : ∀p ∈ P } ▷ pairs of identical partitions

5 QP ← blockwiseSimJoin (LP, RP, SP, ϵsp , ϵts )
6 storeHDFS (QP ) ▷ partial results over partitions

/* PHASE #2a: cross-partition search in pairs of adjacent bands */
7 B ← create bands of width ϵsp inwards each side of every p ∈ P
8 RB ← filter RP by B and build a local X-index per band b ∈ B
9 SB ← filter SP by B and build a local X-index per band b ∈ B

10 LB ← {(r ∈ RB, s ∈ SB ) : bands r .b, s .b share a side in partitioning P}

11 QB ← blockwiseSimJoin (LB, RB, SB, ϵsp , ϵts )
12 storeHDFS (QB ) ▷ partial results over bands

/* PHASE #2b: cross-partition search in corner-wise pairs of boxes */
13 C ← create boxes of side ϵsp at the corners of each partition p ∈ P
14 RC ← filter RP by C and build a local X-index per box c ∈ C
15 SC ← filter SP by C and build a local X-index per box c ∈ C
16 LC ← {(r ∈ RC, s ∈ SC ) : boxes r .c, s .c share a single corner in P}

17 QC ← blockwiseSimJoin (LC, RC, SC, ϵsp , ϵts )
18 storeHDFS (QC ) ▷ partial results over boxes

19 Function blockwiseSimJoin (L, R, S, ϵsp , ϵts )
20 Q ← ∅
21 foreach block pair (a, b ) ∈ L do ▷ local search

22 IRa ← local X-index available for dataset R in block a
23 ISb ← local X-index available for dataset S in block b
24 Q ← Q ∪ SimJoinX (IRa .root, ISb .root, ϵsp , ϵts )
25 return Q ▷ results collected from all pairs of blocks

from the other dataset within an adjacent block. Such processing

fits well under the MapReduce paradigm; mappers assign data sub-

sets to workers according to partitioning scheme P. Each worker

employs reduce operations to generate the respective indices and

store them on HDFS. At query time, a map procedure assigns the

indices that reside within each partition to a reducer, which cal-

culates the local results. Simultaneously, mappers shuffle data per

block to workers responsible for their neighboring partitions. Fi-

nally, a reduce operation is carried out on each pair of such blocks

to compute their similarity joins and to store results on HDFS.

Overall, this method manages to provide correct and complete

results for any similarity join query over two datasets of geolocated

time series. This is stated in the following:

Lemma 1. Algorithm 3 issues all qualifying results of similarity
join between two datasets TR , TS of geolocated time series, without
probing candidate pairs more than once and without any false misses.

Proof. Regarding correctness, consider a given partition p ∈ P,
as depicted in Figure 4 and let Rp be the objects of TR having

their location contained therein. Obviously, any of their possi-

bly qualifying pairs from dataset TS must be within distance ϵsp .
So, it suffices to examine similarity between objects in Rp with

those objects of TS topologically located within a buffer that ex-
pands partition p by distance ϵsp . Clearly, the area covered by

the nine blocks (one partition, four bands, and four boxes) con-

cerning TS is exactly this buffer zone, so Qcand (p) = {(TR ,TS ) :
within(TR .loc,p),within(TS .loc,bu f f er (p,ϵsp ))} provides all pos-
sible candidates in a given partition p. As partitions hold disjoint

subsets of the raw data, iterating with the same logic over each

partition p ∈ P, confirms that all candidates are examined.

Regarding completeness, observe that the pairs of blocks involved
at each stage include all possible candidates to probe from each

dataset. At the first tier, searching in each partition p (common for

either dataset) provides all qualifying pairs having their constituent

objects both located in p. Cross-searching beyond the boundary of

each partition p is meaningful only along the adjacent bands and

boxes, each of them coming from a distinct neighboring partition to

p. Clearly, in each of those nine blocks, a disjoint subset of candidate
pairs from the two datasets is examined and their union isQcand (p).
Hence, each candidate pair is probed only once, and no qualifying

results can ever be missing from the final answer. □

6.2 Minimizing Data Shuffling
Recall that a workerw already has locally available all data for sub-

sets of TR ,TS located in its assigned partition p. This is sufficient for

its own local search, butw still needs to send raw data concerning

its four bands and four boxes for the cross-partition search.

This evaluation strategy can be further optimized by minimizing

the amount of data that needs to be shuffled during cross-partition

search. We introduce an intermediate filtering step that takes ad-

vantage of the pruning power of our BTSR-tree index. Consider

a given block a over dataset TR held in worker w ′ that must be

shipped to workerw responsible for partition p. Instead,w ′ builds
a BTSR-tree IRa over this subset in a, and sends this index only to

workerw , which builds its own BTSR-tree ISb over its local subset

of TS within its corresponding block b. Checking for similarity joins

against those two indices can be carried out with Algorithm 2. This

returns pairs {(mbrai ,mbrbj )} of overlapping MBRs, where mbrai
is an MBR over block a and mbrbj is over block b, and each one

contains candidate objects for refinement. The list {mbrai } of all
identified MBRs concerning block a is returned to workerw ′ and
the raw geolocated time series within each such MBR can be read-

ily accessed thanks to the already available BTSR-tree IRa . Those

MBR-filtered time series are then shipped to workerw , which also

retrieves its own raw data from BTSR-tree ISb concerning those

MBRs {mbrbj } identified for its own block b. Finally, those two MBR-

filtered subsets of geolocated time series are each indexed with a

new BTSR-tree and joined according to the similarity criteria to

yield their matching results. As confirmed in our empirical tests,

this index-guided shuffling can reduce the raw data transferred be-

tween workers by more than 50% without sacrificing performance.

7 EXPERIMENTAL EVALUATION
7.1 Experimental Setup
We generated several synthetic datasets of various sizes, using a

real-world water consumption dataset as a seed. This real dataset,

provided by the DAIAD project (http://daiad.eu/), contained geolo-

cated time series of hourly water consumption for 822 households

in Alicante, Spain from 1/1/2015 to 20/1/2017. On this data, we first

http://daiad.eu/
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(a) Varying ϵsp (b) Varying ϵts (c) Scalability

Figure 5: Processing cost for centralized execution of similarity join queries employing different indices.

Table 1: Parameters tested in the experiments
Parameter Values
Dataset size (centralized) 50K, 100K, 150K, 200K, 500K, 1000K
Dataset size (distributed) 500K, 1000K, 1500K, 2000K
Number of partitions д × д (distributed) 10

2
, 20

2
, 302 ,402 ,502 ,602 ,702

Distance radius ϵsp (meters) in queries 100, 125, 150, 175, 200
Time series deviation ϵts in queries 0.3, 0.35, 0.4, 0.45, 0.5

calculated the weekly (24 × 7) time series per household by aver-

aging corresponding hourly values over the entire period. Then,

these weekly sequences were used as seeds to synthetically increase

the size of the dataset up to 2 million geolocated time series, by

introducing small random variations in their location and pattern.

In preliminary tests, we fine-tuned parameters for the various

indices used against this data. For BTSR-trees and R-trees, the num-

ber of entries per node ranges betweenm=10 andM=50. In iSAX,
up to M=250 time series can be stored per leaf and the length of

each SAX word isw=8. Table 1 lists the range of values for the rest

of parameters used in our tests; default values are in bold.

All algorithms were implemented in Java. Distributed methods

were developed on Apache Spark 2.3.0. The centralized experiments

were executed on a machine running MacOS 10.13.5 with a 2GHz

CPU and 8GB of RAM. The distributed tests were conducted on a

cluster with 7 virtual machines running Ubuntu 16.04.3 LTS, with

4 cores each, clocked at 2100MHz. Each node had a total of 5GB of

RAM. Next, we report performance in terms of average response

time per query. Each query runs against two instances of the same

dataset (i.e., self-join), excluding identity matches from resulting

pairs. In the distributed case, we also measure the amount of raw

data transferred between workers during the cross-partition phase.

7.2 Evaluation Results
7.2.1 Centralized Methods. Figure 5 depicts performance for

different parameter values and dataset sizes. The iSAX-based algo-

rithm performs significantly worse than the rest, mostly because

each node comparison involves reconversion of the iSAX symbols

to the Euclidean space [18] and consequently, calculation of Eu-

clidean distances over long sequences (up to 168 values in this data).

BTSR-tree is superior in all cases, as it is able to prune in both time

series and spatial domains. As shown in Figure 5(a), BTSR-tree and

R-tree-based methods perform similarly for smaller ϵsp values, as

fewer candidates are found and need refinement in the time se-

ries domain. However, as the distance radius ϵsp is relaxed, R-tree

search worsens significantly, while BTSR-tree still copes well due to

its hybrid pruning ability. iSAX-based search is immune to different

values of ϵsp , as filtering with spatial distance is only involved at

refinement. With varying ϵts values (Figure 5(b)), BTSR-tree and
R-tree approaches have no fluctuations in performance, as ϵsp is

fixed and refinement of candidates involves a similar cost in the

time series domain. However, using iSAX indexing is faster for

lower ϵts values and performance slowly degrades for larger ϵts ,
as more candidates become eligible. In terms of scalability (Figure

5(c)), all algorithms are almost equally fast over small datasets. But,

as dataset sizes grow, the BTSR-tree approach scales better thanks

to its hybrid pruning, although the number of matching pairs esca-

lates. Indicatively, for 100K input data, we get 2K qualifying pairs;

in the 500K dataset, we get 40K results. For input data sizes larger

than 500K, all centralized methods fail to finish execution, issuing

an out-of-memory error. This manifests the necessity of distributed

processing schemes for similarity joins over larger datasets.

7.2.2 Distributed Methods. First, we compare SimJoinMR (using

R-trees for local indexing) with its SimJoinOPT variant (employing

BTSR-trees) for varying ϵsp values. It is apparent from Figure 6(a)

that query response times for the SimJoinMRmethod are increasing,

since the underlying R-trees fare worse for larger distance radii.

With larger ϵsp values, more raw data has to be shuffled between

workers during the cross-partition checks, as the size of bands

and boxes involved gets bigger and covers more candidate objects.

Concerning exactly this shuffling overhead, Figure 6(b) reveals that

this is indeed lower in the SimJoinOPT variant, which explains

its processing cost advantage. Finally, Figure 6(c) illustrates the

number of results produced from the two stages; first locally in

each partition, and then after cross-partition checks in bands and

boxes. As distance constraint ϵsp gets more relaxed, more pairs

qualify as answers. For smaller ϵsp , the majority of results come

locally from each partition. But as ϵsp is relaxed, many more pairs

are found in neighboring partitions, as bands and boxes also become

larger and increase their share in qualifying results much more.

With regard to increasing ϵts values, observe in Figure 7(a) that

method SimJoinMR is consistently worse than SimJoinOPT, basi-
cally due to the different pruning power of their respective indices.

The former relies on R-trees, which have no effect with varying ϵts ;
in contrast, BTSR-trees employed by SimJoinOPT can effectively

filter candidates also in the time series domain. With a more relaxed

ϵts , more results qualify, hence the linear increase in processing
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(a) Query response time (b) Geolocated time series shuffled (c) Number of query results per phase

Figure 6: Performance results for the distributed methods with varying ϵsp .

(a) Query response time (b) Geolocated time series shuffled (c) Number of query results per phase

Figure 7: Performance results for the distributed methods with varying ϵts .

(a) Query response time (b) Geolocated time series shuffled (c) Number of query results per phase

Figure 8: Scalability of the distributed methods.

(a) Query response time (b) Geolocated time series shuffled (c) Number of query results per phase

Figure 9: Effect of partitioning on the performance of distributed methods.
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cost. Regarding the data shuffling overhead, this is practically sta-

ble for each method irrespective of the ϵts constraint (Figure 7(b)).
In SimJoinMR, selection of objects that should be transmitted is

solely based on their spatial containment in the respective bands

and corner-wise boxes. But SimJoinOPT spares transferring many

irrelevant objects, as it also uses filtering with ϵts ; the amount of

dispatched objects is only slightly increasing with ϵts . Regarding
the number of generated results, Figure 7(c) reveals a rather steep

increase for small variations of ϵts , which indicates that most time

series are clustered within a small range of ϵts deviations. As orig-
inal data concern water consumption, this explains such highly

correlated behavior, especially among neighboring households; of

course, this pattern is replicated in the synthetic data as well. The

percentage of results from cross-partition checks in each full an-

swer is similar across various ϵts values, as distance ϵsp is fixed

and so are the respective bands and boxes involved in this phase.

Figure 8 concerns scalability of the distributed methods with

increasing dataset sizes. For smaller datasets, both methods are

competitive, but response times for SimJoinMR escalate with larger

sizes. With 2 million objects as input, this method did not finish,

as it required traversal of too many paths in its underlying R-trees

per partition, exceeding the capabilities of the workers. Regard-

ing communication (Figure 8(b)), SimJoinMR requires shuffling of

more raw data, especially for input size of 1.5 million. In contrast,

SimJoinOPT maintains lower communication overhead, as it uses

light-weight indices to guide data shuffling. Figure 8(c) indicates

that the number of results is growing according to the input size,

as the spatial density also increases with larger synthetic datasets

that still cover the same area (Alicante).

Last but not least, we conducted tests concerning partitioning,

i.e., varying the grid granularity and distributing input data accord-

ingly. As shown in Figure 9(a), SimJoinMRwas not able to conclude

its evaluation over coarser spatial subdivisions, as each resulting

partition can hardly cope with the larger subsets of data held lo-

cally. For 30 × 30 partitions, SimJoinOPT performs better thanks to

the superiority of BTSR-tree in pruning. But SimJoinMR overtakes

SimJoinOPT when allowing finer partitioning (40 × 40 partitions or

more), as the R-tree overhead diminishes. Each such index has to

deal with smaller subsets, although it incurs higher communication

overhead compared to SimJoinOPT (Figure 9(b)). Indeed, having

more partitions forces SimJoinOPT to search for joins pairwise in

many more bands and boxes, while also building the respective

intermediate indices. So, such optimization really compensates with

a coarser partitioning, achieving its best performance with a 20×20

grid as depicted in Figure 9(a). Finally, Figure 9(c) indicates that the

majority of resulting pairs are derived locally under a coarser par-

titioning. However, this is reversed with finer partitioning, as the

size of blocks (bands and boxes) during the cross-partition checks

cover much more area per cell, hence many more qualifying pairs

are found while searching across neighboring partitions.

8 CONCLUSIONS
In this paper, we addressed the problem of hybrid similarity joins

over geolocated time series according to both their spatial prox-

imity and time series similarity. Our approach takes advantage of

different state-of-the-art indexing schemes to design an efficient

algorithm for query evaluation. Given that scalability is a bottle-

neck in such centralized settings, we show how a space-driven

partitioning can be employed to deal with much larger datasets

in cluster environments. Our parallel and distributed method can

efficiently execute similarity joins per partition locally, while also

minimizing the amount of data shuffled between processing nodes.

Our empirical results against synthetic datasets of varying sizes

confirm the efficiency and effectiveness of our algorithms.
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