Automatic Clustering by Detecting Significant
Density Dips in Multiple Dimensions

Pantelis Chronis
University of Peloponnese, Athena RC
chronis@uop.gr

Abstract—Clustering algorithms are used to find groups of sim-
ilar items in a dataset. Automatic clustering algorithms achieve
this task without requiring users to input critical parameters. A
recent automatic clustering methodology uses Hartigan’s dip test
to detect significant peaks in the distribution of a dataset. This test
can detect peaks in the distribution of a one-dimensional variable.
To perform clustering in multiple dimensions, algorithms of
this methodology rely on one-dimensional transformations of the
dataset, which limits their effectiveness. In this paper, we present
M-Dipr, an automatic clustering algorithm that works directly
on multi-dimensional space. M-DIP also assumes that clusters
correspond to different peaks in the distribution of the dataset.
It separates clusters at the dips that form between neighboring
peaks. Dips are detected directly in multi-dimensional space,
using a graph-based method. Their statistical significance is
evaluated through appropriate simulations. Our experimental
evaluation indicates that M-Di1P achieves significantly better
results than existing algorithms based on Hartigan’s dip, as well
as other state-of-the-art automatic clustering algorithms.

I. INTRODUCTION

Clustering algorithms attempt to group the items of a dataset
together in a meaningful way. They consider items as points
in a data-space and define a cluster as a group of points that
are close by, while being far from other groups of points.
Most clustering algorithms depend on input parameters, like
the number of clusters or thresholds for the density of a
cluster. These parameters are very important and different
parameter values may lead to very different results. However,
in most cases there is no objective way to determine the
appropriate parameters, which creates uncertainty over the
optimal parametrization and the result. Automatic clustering
algorithms aim to address these problems by automatically
selecting parameter values, based on appropriate assumptions.

A very effective existing automatic clustering methodology
assumes that clusters correspond to different peaks in the
probability distribution that generated the dataset [1], [2], [3],
[4]. Since the distribution is not available, these peaks must be
detected from the empirical density of the dataset. However,
peaks in the empirical density may be formed at random,
due to sampling variance, without existing in the distribution
that generated the data. To achieve accurate clustering, an
algorithm needs to automatically distinguish between random
peaks and peaks that actually exist in the distribution.

In one-dimensional space, this can be achieved using Har-
tigan’s dip test of unimodality [5]. Given a sample from
a one-dimensional random variable, this test can determine

Spiros Athanasiou

spathan @imis.athena-innovation.gr

Spiros Skiadopoulos
University of Peloponnese
spiros @uop.gr

Athena RC

whether one or multiple peaks (modes) exist in its distribu-
tion. It achieves this by detecting the dips that are formed
between neighboring peaks. Recently, notable clustering algo-
rithms have been proposed that use Hartigan’s dip to perform
clustering in multidimensional space. Since the test is one-
dimensional, such algorithms rely on one-dimensional trans-
formations of the dataset. The most notable algorithms of this
methodology are skinny-dip [1] and dip-means [2]. Skinny-dip
applies the test on linear projections of the data and dip-means
applies it on pairwise distances between points. Inevitably, part
of the dataset’s structure is lost after such transformations: a
cluster may not be visible on any linear projection and its
location may become ambiguous if we only consider pairwise
point distances. Unfortunately, it is not straightforward to
generalize Hartigan’s dip test to multi-dimensional space.

In this paper we present M-D1IP, an algorithm that can detect
significant density dips directly in multi-dimensional space.
M-Dip also assumes that clusters corresponds to different
peaks in the probability distribution that generated the data,
and separates clusters at the density dips that are formed
between neighboring peaks. To distinguish between dips that
are formed at random in the dataset and dips that actually exist
in the generating distribution, M-DIP calculates bounds on the
size of random dips in multi-dimensional space. These bounds
are based on the simple property that random dips are not
likely to become very deep. Their calculation is interdependent
with the way that the dips are detected and measured. In M-
Dip, the dips are detected by traversing the dataset following
appropriate paths of closely located points, which pass through
the denser regions of the dataset. The bounds are obtained
through simulations using the uniform distribution, which,
as we show in Section III-C, is an appropriate, worst case
distribution for obtaining such bounds. By evaluating multi-
dimensional space directly, M-DIP can detect clusters more
effectively than skinny-dip, dip-means and other state-of-the-
art automatic clustering algorithms

The rest of the paper is organized as follows: in Section
IT we describe M-DIP in detail, in Section III we present a
technical analysis of M-DIP, in Section IV we survey related
work in comparison with M-DIP, in Section V we present our
experimental evaluation and, finally, in Section VI we preset
our conclusions.

Density

Dip2

Fig. 1: An example dataset with two Gaussian clusters, A and
B, and a path from A to B, that passes through closely located
points. The plot at the bottom shows the density of the dataset,
on each step of the path. The dashed line separates the two
clusters. A significant dip (Dip2) s formed in the density at
the location where the clusters are separated. A shallower dip
(Dip1) also is formed at random.

II. OUR METHOD

An example for the operation of M-DIP is illustrated in
Figure 1. Specifically, the figure depicts a dataset generated
from a mixture of two Gaussians, A and B, and a path of
closely located points that goes from A to B. The density
at each step of the path is depicted at the bottom of the
figure. A deep density dip (Dip2) is formed at the location
where the clusters are separated. A shallower dip (Dipl) is
formed randomly inside cluster A. The most important part
of M-DIP is that it can differentiate between Dipl, which
is random, and Dip2, which is significant, while directly
traversing the multi-dimensional space. This is achieved using
a threshold of statistical significance. This threshold constitutes
a bound on the depth that a dip can reach at random in a
dataset, without actually existing in the generating distribution.
The threshold is interdependent with the way the dataset
is traversed and is calculated through simulations with the
uniform distribution. As we show in Section III-C, uniform
is appropriate for obtaining this bound because, under certain
assumptions, it generates the deepest random dips. Next we
present the algorithm in detail.

A. Notation and definitions

We consider a dataset X, consisting of n points in R™. Let
x € X be a point and xj, be its k-th nearest neighbor in X.
Let also p(x,z) be the distance between x and zy. In the
hypersphere centered at « with a radius of p(x, z)) there are
k + 1 points of X (z and its k-neighbors). In other words,
around x and in a volume proportional to p(x, z;)™ there are

[Notation [Explanation
X A set of n points in R™.
dens(x) The density of point .
k-NN(X) The k nearest neighbor graph of dataset X.
p(z,y) The distance between points z and y.
Day A path connecting two points z and y of k-NN(X)
dip(p) The dip, i.e., the minimum density of path p.

Py The set containing all path that connect two points
z and y of k-NN(X)

dip ,(P) The shallowest dip in the set of paths P.
point (P) | The shallowest dip point of P.
rsizes(P) | The relative size of the shallowest dip.

TABLE I: Notation summary

k+1 points. We define the density of x, denoted by dens(z),

s E+1

P (Z‘ » L k)m

The k-neighbor graph of dataset X, denoted by k-NN(X),
is a directed graph with nodes the points of X and directional
edges that point from every node towards the nodes of its k-
nearest neighbors. Intuitively, k&-NN(X') connects all points of
X using paths that exclusively contain k-nearest neighbors. We
denote as v the most dense point of X. Let us now consider a
path py,,, that connects the most dense point ¢ with an arbitrary
point z in k-NN(X'). The dip of py,, denoted by dip(pys) is
the minimum density of the points in py,.. More formally, we
have dip(py,) = min {dens(v) | v € py, }. There are two
cases regarding dip(pys):

dens(z) = (1)

o If dip(pys) occurs at the ending point x, then density
follows a decreasing trend along path py,.

o If dip(py,) does not occur at the endpoint x, then a
density dip is formed along p. This means the density
starts at a certain high level on point v, drops to the
lowest level (denoted by dip(py.)) and then increases
again at the ending point z.

Let Py, be the set of all paths that connect most dense point

1 with a point z in k-NN(X). The shallowest dip of set Py,
denoted by dip,(Pys), is defined as the shallowest dip of all
its paths, i.e., the dip that has the maximum density. More
formally, we have dip,(Py,) = max {dip(p) | p € Pys}.
Intuitively, dip,(Pys) is the most shallow dip that needs to be
traversed to get from 1 to x. We also define the shallowest dip
point of set Py, denoted by point,(Py.), as the point of the
path in Py, that achieves the shallowest dip. More formally,
we have point,(Py,) = {v € p, p € Pya | dens(v) =
dip(p) = dip ,(Pyz)}-

Finally, we define the relative size of the shallowest dip of

Py, denoted by rsizes(Pyy), as

_ dips (Pm)

rsizes(Pye) = dens(x) ¥

rsizes(Pyy) is the metric that M-DIP uses to evaluate and
distinguish dips. The value of rsizes(Py,) represents the
density dip than needs to be traversed in k-NN(X'), in order
to get from ¢ to x, normalized with the density dens(z) of
the common ending point x of the paths in Py,. The way that

rsizes(Pyy) is defined means that on every path from ¢ to x
the relative density (with respect to dens(x)) falls at least as
low as rsizes(Pys), i.e., there is no way to get from 1 to x
without traversing a dip with relative density at least as deep
as rsizes(Pyz).

B. Threshold of statistical significance

We assume data are generated from an underlying distri-
bution D. Significant dips, that exist in distribution D, are
distinguished from random dips, that are formed randomly
on dataset X, by their depth. Dips that occur at random are
not likely to exceed a certain depth. This is quantified by
threshold 6. Comparing rsizes(Py,) with 0 takes the form of
statistical hypothesis testing. The null hypothesis Hy is that
the distribution D does not contain a dip (i.e., it contains only
a single peak, it is unimodal). The alternative hypothesis H; is
that the distribution contains a dip (i.e., it contains more than
one peaks, it is multimodal). We want a threshold € such that,
under hypothesis Hy, a point x with rsizes(Py,) < 6 exist in
X with probability smaller than «, where « is the significance
level of the test. If we observe rsizes(Py,) < 6 for any z,
we can reject Hy in favour of Hj, at significance level a.
Therefore, if rsizes(Py,) < 6 we infer that the distribution
has multiple peaks.

Due to the complexity of rsize(Py,) and the multiple and
dependent comparisons of rsizes(Py,) with 6 for all z, the
analytical calculation of # is intractable. In order to obtain a
value for 6 we resort to simulations. During the simulations
we estimate how low 7sizes(Py,) can become at random,
without the existence of multiple peaks. As we show in Section
III-C, under certain assumptions, the appropriate distribution
for these simulations is the uniform, because it generates the
minimum values for rsizes; at random, among all unimodal
distributions.

The simulations are performed in the following way. We
generate r random datasets AX7,..., X, each containing n
points (i.e, the number of points that X’ has). These points are
randomly drawn from the m-dimensional uniform distribution
over the region [0, 1]™. For each dataset X;, 1 <4 < r:

o We construct k-NN(A;).

o We compute the density (dens) of all points in Aj.

o We select the point 7 having maximum density in &;
and compute the smallest dip rsize(Py,) for all points
inzx € &

o We return the smallest dip observed in &; , denoted by
min.rsizes(X;).

Then, threshold 6 is assigned the 1 — a-percentile among the
min.rsizes(X;) values.

Calculated this way, threshold # provides a bound for the
value of rsize; on a dataset generated from the uniform
distribution. Since the uniform is the worst case unimodal
distribution, @ is a bound for other unimodal distributions
as well. We note that threshold 6 implicitly corrects for the
multiple dependent comparisons of rsizes(Py,) with 6 for
all z, because it is calculated as a bound for the minimum
rsizes(Py,) for all z in the entire dataset, and not for each

Algorithm: SHALLOWDIPSEARCH

Input ¢ A point dataset X’
Parameter : Statistical significance threshold 6
Output : Cluster A

A=0,B=0.,C=X

Let ¢ be the most dense point of X

Move 1) from set C to set A

Set cur to be

repeat

Select points N, that are neighbors of cur in
k-NN(X)

forall x in Ny, do

8 if z in C then

9 Set rsizes(Pyaz) =

10 L

min(rsizes(Pyeur), dens(cur))

Move z from set C to set B
11 Let 5 be the most dense point of B

A N B W N -

N

12 Remove 3 from B

13 if 6 < rsizes(Pys) then

14 Add 3 into A

15 | Set cur to be 3

16 else

17 Remove from A points visited following neighbors
of point (Pyg)

18 until B = 0;

19 return A

Fig. 2: Smallest Dip Search

point independently. Also, we note that, by definition of
rsizes(Pyy, condition rsizes(Py,) < 0 explicitly evaluates
the density decrease relative to dens(x). However, implicitly, it
also tests the density decrease relative to 1, since v is selected
as the most dense point of the dataset and dens(t)) > dens(x).
Finally, we note that threshold 6 is used to infer the existence
of a dip in the distribution. Having inferred its existence, M-
D1p uses the location of the shallowest dip (point,(Py,)) to
divide the points between the two sides of the dip.

The exact way the algorithm traverses the dataset to obtain
rsizes and apply 6 to detect clusters is described next.

C. Algorithm SHALLOWDIPSEARCH

Algorithm SHALLOWDIPSEARCH (Figure 2) takes as input
a dataset X' and uses threshold 6 to return a cluster A. The
algorithm maintains three sets of points A, B and C. Set A
contains the visited points which will form the returned cluster,
set BB contains the neighbors of points in .4 and set C contains
all other points. Initially, A =0, B=0 and C = X (Line 1).

SHALLOWDIPSEARCH computes the most dense point
of X (Line 2), moves it from set C to set A (Line 3) and
sets it as the current processing point (stored in variable cur
— Line 4). Then, SHALLOWDIPSEARCH performs a repeat
loop (Lines 5-18) until set B is empty. In each iteration, the
algorithm (a) finds the k-nearest neighbors of cur and if they
are in C, calculates their rsize; (Line 9) and moves them to
B (Line 10), (b) finds the most dense point 3 of B (Line 11)
and removes it from B (Line 12) and (c¢) if 0 < rsizes(Pyp)
then 3 belongs to the same cluster as 1, so it is added to A

Algorithm: M-Dip

: A point dataset X’
: A set of clusters S

Input
Output

S§=0
repeat
Calculate statistical significance threshold 6
A = SHALLOWDIPSEARCH(X, 6)
Add the new cluster A into the set of clusters S
Remove the points of A from X
until X' is empty;
return S

® N AU AW N =

Fig. 3: Significant Density Peak Detection

(Line 14) and is set as the current processing point cur (Line
15). If rsizes(Pyg) < 6, the dip towards 8 is considered
deep and £ is not included in cluster 4. In this case the two
clusters are separated on point,(Py3), where the dip of the
path that connected 1) to /3 lies. Points that have been included
in A following paths through point (P, z) lie past the detected
dip, so they are considered part of the neighboring cluster
and are removed from A (Line 17). As we show in Section
II-A, SHALLOWDIPSEARCH correctly traverses the smallest
dip paths of X.

D. Algorithm M-Di1p

Algorithm M-Dip (illustrated in Figure 3) iteratively applies
SHALLOWDIPSEARCH, to detect the clusters of a dataset.
On each iteration, it first calculates the threshold of statis-
tical significance € (Line 3). Subsequently, it applies SHAL-
LOWDIPSEARCH, with the calculated threshold, to detect a
single cluster A (Line 5). The cluster is appended to the set of
discovered clusters S and its points are removed from X" (Line
5). The process is iterated until all points of X’ are assigned
to a cluster. Threshold € must be updated in every iteration of
M-DI1P because it depends on the number of points remaining
in X, after the removal of cluster A.

ITII. ANALYSIS OF M-Dr1p
A. Shallow dip search

In this subsection we show that SHALLOWDIPSEARCH
traverses the shallowest dip path between point v and each
point x it visits. We note that the algorithm stops traversing
points on paths where condition 6 < rsizes(Py,) is violated.
These points by definition belong to a different cluster and
will be traversed during a next iteration. We focus on the
algorithm’s behaviour on points that are traverse on a given
iteration. Also, we note that it is possible for the k-NN graph
to not be fully connected. In this case the algorithm will be
unable to reach points in different components of the graph.
This can be easily overcome by adding one auxiliary point
and two auxiliary edges, to connect any two disconnected
components. The way these points are used is trivial so we
do not describe it in detail.

The neighbors of x in k-NN(X') are its k nearest neighbors,
denoted as NN (x). An edge from z to y exists in k-NN(X),
for each y € NN (z).

Lemma 1. In k-NN(X), a path that contains point x also
contains one of its k nearest neighbors NN (z), unless x is
the final point of the path.

Lemma 1 follows directly from the definition of k-NN(X).

Lemma 2. At each iteration of SHALLOWDIPSEARCH, any
path from 1 to any point x € C passes through a point in B.

Proof. Let B; be the set B at iteration 4. At iteration 1, By
contains NN (1), the neighbors of 1. By Lemma 1, all paths
from ¢ to z € C (x # 1) pass from a point in B;. Therefore
Lemma 2 holds for 7 = 1. At iteration ¢ the algorithm removes
S from B and adds NN () (SHALLOWDIPSEARCH Line 12):
B; = (Bi—1\ B) UNN(B). By Lemma 1, every path from ¢
to « € C that passes through 5 (5 # x), also passes through
a point in NA(8). Consequently, by removing § and adding
NN(B) to B, no paths are excluded. Therefore, if Lemma 2
holds for B;_; it also holds for B;. By induction this proves
Lemma 2. O

Proposition 1. Algorithm SHALLOWDIPSEARCH traverses
the shallowest dip path from point 1) to every other point x

Proof. Let u denote the shallowest dip point on the shallowest
dip path p from v to x discovered by SHALLOWDIPSEARCH.
We assume that another path p’ from ¢ to y exists, with
shallowest dip point u’ having:

dens(u) < dens(u’) (3)

This would mean that the path discovered by SHAL-
LOWDIPSEARCH does not contain the shallowest dip, since
the density of u' is higher than u. By definition of the
minimum density point, each point in path p’ has higher
density than u':

dens(u') < dens(v), Yv € p 4)

Let i be the iteration of SHALLOWDIPSEARCH on which
u was selected and included in A. We denote as B;
the set B, on iteration 4, right before the selection of w
(SHALLOWDIPSEARCH Line 11). By Lemma 2, a point v
from the alternative path p’ exists in B;. For dens(u), dens(u’)
it holds from SHALLOWDIPSEARCH Line 11 and Equation 4:

dens(z) < dens(u),Vz € B; = dens(v) < dens(u)

= dens(u’) < dens(u) ©)

This contradicts Equation 3 that holds by definition of p’ as a
path with a shallower dip than p. Therefore p’ can not exist
and p, traversed by SHALLOWDIPSEARCH, is the shallowest
dip path from % to z. O

B. Estimation of dens(x)

Density dens is calculated using the k-th nearest neighbor
of x. This method of density estimation has the advantage
that it does not require the selection of a bandwidth parameter,
which is difficult to determine and may vary through a dataset.
Instead, it adjusts automatically to the density of each location.
However this method requires the selection of parameter k.

We assume that dataset X consists of points sampled
randomly from the underlying probability distribution D. This
makes dens(x), the empirical density of point z, a random
variable, affected by sampling variance. Parameter k affects
the variance of dens(x), higher k leads to smaller variance.
The value of k£ also determines the resolution with which the
density over the data-space is calculated. In this case a higher
k leads to smaller resolution. We want to find a value for k
that achieves low variance while maintaining high resolution.
To find such a value we calculate the variance of dens(x).
(This analysis of dens(x) is also useful for the analysis of the
uniform distribution, in Section III-C.)

Proposition 2. The probability distribution of dens(x) is
p(dens(z) < d) = F(k — 1,n — 1,7,(e)), where F is
the Cumulative Distribution Function (CDF) of the Binomial
distribution, m,(e) is the total probability mass of dataset’s

distribution D, in a hypersphere of radius e = '}/ k%;l around

point x.

Proof. dens(x) is defined in Equation 1. The probability that
p(z,xy) (the distance between z and its k nearest neighbor
x)) is smaller than a constant e is equal to the probability
that k or more points fall in distance e from x. This can be
modelled using the binomial distribution as:
n—1 n 1
o) <0 =3 ("7 ma(@-ma@)r 7 ©
j=k
For a given j the above expression corresponds to the proba-
bility that j or more out of the n — 1 remaining points of X
fall in radius e from x. 7, (e) equals to the total probability
mass in an area of radius e around z. For any underlying
distribution D, 7, (e) is a constant in [0, 1], which depends on
D, the location of z and radius e.
The Binomial CDF F' gives the probability of an event to
occur up to k times with n trials, therefore its complementary
1 — F gives the probability for more than k times:

~ (n) n—i
1— F(k,n,7) = Z (i>7r(1—7r) (7)
i=k+1
From Equations 6 and 7:
plp(z,zr) <e)=1-F(k—1,n—1,m.(e)) (3)

Consequently, because dens is inverse proportional to p™
(Equation 1):

p(dens(x) < d) = 1 - plp(a,ai) <)

JiFl O
d

O

:F(k_lan_lvﬂ_m(e))a €=

Using Proposition 2, we can calculate the distribution of
7, (e) for given k and n. This distribution is approximately
normal, as expected from a sum of binomials that have large
n. If we approximate distribution D around point x using a
constant z, using the distribution of 7,(e), we can estimate

—— n=10000
n=20000

—— n=50000
n=100000

Confidence Interval Width

I T T T T T 1
10 20 30 40 50 60 70

k

Fig. 4: The width of the 95% confidence interval of dens(x),
relative to number of neighbors k, for various dataset sizes
n. The scale of the y axis depends on probability density z
around z

the distribution of dens(z), as a function of n,k,z. This
approximation is good when n is 1a7rnge or D is smooth. Then
mz(e) = z-V(e), V(ie) = F(’Tﬂiil) - €™, where V(e) is
the volume of the m-dimensional hypersphere with radius e.

Since z and 1“(”&71-1) are constants we denote them as c; ,:
2

mz(e) =Cym - €M & e™ =

Ty (10)
Czm

Using the distribution of 7, (e) and Equation 10, we cal-
culate the distribution of p(z,z;)™ and using Equation 1 we
calculate the distribution of dens(x) and obtain the width of its
95% confidence interval as a function of k. These calculations
are performed numerically, for various values of n,k. The
results are depicted in Figure 4. The width of the confidence
interval decreases rapidly for small k£ and then it stabilizes.
Moreover, the width also increases for larger n. Probability
density z of the dataset is a scale parameter, which affects the
scale of the y-axis but not the shape of the curves. From Figure
4 we can see that the estimation of density has converged
for most dataset sizes m. Therefore, as a default value we
select £ = 30. For very large datasets a larger value of k£ may
be selected. When n increases, the error of the estimation
increases but the mean of the estimation increases as well. If
we are interested in the relative error of the estimation the

= 30 is appropriate for all dataset sizes. Finally, the above
numerical analysis suggests, that for £ = 30, the distribution
of dens(x) is approximately normal with standard deviation
to mean ratio approximately 0.18, for all n (given n > k).

C. Uniform distribution

To detect clusters, M-DIP evaluates the unimodality of
the distribution that generated the dataset. We consider a
distribution unimodal if it has a single maximum which is
global, i.e., it has no local maxima. Although other definitions
for multivariate unimodality exist, this simple definition is
sufficient for our application. An example of a multivariate
unimodal distribution is depicted in Figure 5. Unimodal dis-
tributions with more complex shapes exist, as long as no
additional local maxima are formed. By definition, a unimodal
distribution has no dips that completely separate any two
locations of the space. Therefore any dips that completely
separate two locations in a dataset generated from a unimodal
distribution are random. The size of such a random dip is

Fig. 5: An example of a two dimensional unimodal distribution

unlikely to become very large. We want to find the unimodal
distribution that generates the largest random dips, in order to
obtain bounds for their size.

In a dataset X, M-DIP evaluates the size of a dip using
metric rsizes(Pys). Metric rsizes(Py,) expresses the density
drop on all paths from peak v to z. Its behaviour can be
studied using the idea of a vertex-cut set. On a graph G a
vertex-cut set is a set of nodes which, if removed, G is no
longer connected. We say that a vertex-cut set C' separates x
and ¢ if, when C' is removed, z is not reachable from . We
note that, in k-NN graph, nodes correspond to points of the
dataset. An example of a vertex cut set that separates ¢ and
x is depicted in Figure 6. If all nodes in the box denoted by
C are removed, x is not reachable from . The background
color represents the probability density on each location of the
data-space (red is denser). Given a point x, a vertex-cut set
can contain nodes in regions with higher and lower probability
density than z. Generally, more nodes of the set are expected
to exist in regions with higher probability density.

From the definition of rsizes(1), x) (Section II-A), in order
for rsizes(¢,z) < 6, a vertex-cut set C' which separates 1)
from must exist for which dens(u) < 6 - dens(z),Vu € C.
In this case a density drop of relative size 6 is formed all
around point x. Next, we present an analysis that shows that
under some assumptions, the probability of rsize (¢, x) < 0
decreases when the distribution becomes non uniform uniform
around x. These assumptions are very simplifying but can be
generalised.

In brief, the probability that dens(u) < 0-dens(x),Vu € C
(i.e., the probability falls below a specified level for all points
of a cut-set C')is expressed as a product. Increasing the density
of some regions and decreasing the density of other regions
around x increases some factors of the product and decreases
others. Since a product is more sensitive to small factors, the
overall probability decreases. This is magnified by the fact that
more points fall in the denser regions, therefore there are more
decreasing factors. Next we analytically describe this effect
under the assumption of a linearly approximated distribution,
in a location close to x.

More specifically, we consider point = in the center of a
region R. We assume that probability density is linear in region

Fig. 6: An illustration of a vertex-cut set that sparates %
from z. All paths from % to x pass from a node in C. The
background color represents the probabillity density of the
space. More nodes exist in the denser part of C.

R. An illustration of this setting is depicted in Figure 7. Given
that the probability density is linear in R and z is at the
center of R, the probability density is symmetric around line
L (or hyperplane L in more dimensions), which passes from
z and is perpendicular to the direction of the gradient of the
distribution. We divide region R in two sub-regions R; and
Ry divided by line L. Since L is perpendicular to the gradient,
R; has higher probability density than Ro. We further divide
R, and R, into many small subregions as depicted by the
boxes in Figure 7 (the specific shape of the subregions is not
important). Given the symmetry around L for each subregion
r in Rj, a antisymmetric subregion 7,y exists in Ra.

We denote as , the total probability mass in the box of
subregion 7. From the antisymmetry it holds that 7, = 7, +¢
and Try = Tz — G, for constant ¢ > 0. We assume that the
number of nodes in cut-set C, |C| = [, is independent of the
distribution in R and that the nodes are randomly and indepen-
dently distributed on region R. From the binomial distribution,
on average, the number [,. of nodes on each subregion r will be
proportional to the probability mass of the region: I, = Sin,.,

Fig. 7: A point z in a region with linear probability distribu-
tion. The region in divided in many subregions. The density
of the subregions is antisymmetric to line L (e.g., subregions
T, T(s) are antisymmetric).

where 3 is the total density mass of R: 5 = Y 7., Vr € R.
We denote as pg;p(u|m,) = p(dens(u) < 0 - dens(x)|my, 7y)
the probability that the empirical density at point u (dens(u))
falls bellow 6 - dens(x). Probability pg;,(u|m,) depends on
the probability densities 7, 7, around each point respectively,
but we omit 7, because it is constant for all u. We denote as
Pdip(Ur|m,) the same probability for a single node u, € r.
It is important to remember that as the probability density
increases the empirical density increases as well (Section
III-B). Therefore pg;p(u,|m,) is decreasing with ..

From the description presented above, and assuming the
events are independent, the probability that a significant den-
sity decrease occurs on all points of C' is:

p(C) = [T pap(ulm.)

uelC
= I paipCurilme)70 T paip(ury |,) 77
r1ER; ro€Rs
- H Paip(Ur|me 4)P =T p i (o [y — ¢)PHT==0)
reR,
(11)

In the final product of Equation 11 we have paired each
subregion r € R; with its symmetric 7,y € Rz. Each pair
consists of term py;, (uy |75 +), which has lower probability,
and pgip(ur|m; — c), which has higher probability, because
¢ > 0. Moreover, the terms with lower probability have larger
exponents: Bl(m, +¢) > Bl(m; — ¢). The product of Equation
11 decreases very fast when ¢ grows, under any reasonable
approximation for pg;p(u,|my + ¢). This occurs because the
product is more sensitive to terms approaching zero than to
terms approaching one (smaller factors have larger partial
derivatives). The effect is magnified by the exponents, which
are larger for the smaller factors. If we follow the analysis of
Section III-B and approximate p(dens(x)|m,) with a Normal
distribution with mean and standard deviation proportionate
to m,, we can calculate pg;,(u,|m,; + ¢) using the Normal
CDF. Then we can prove that the probability of Equation 11
is maximized for ¢ = 0, which corresponds to the uniform
distribution. Due to factor [in the exponents of Equation 11,
the probability of a dip in very large sets C, that span regions
far from x, approaches zero.

This analysis shows that the uniform is the worst case
distribution for the cases that are well approximated by our
assumptions. Specifically, our assumptions are: (a) we con-
sider a location close to = when the distribution is linearly
approximated, (b) the size of cut set C' is independent of
the distribution and (c) the nodes of cut set C' are distributed
multinationally in the subregions of R. These assumptions are
restrictive but they serve to show that the probability that a dip
occurs all around z diminishes very quickly when a non-zero
gradient in density exists at the region around x. This still
holds even when assumptions (a),(b) and (c) are significantly
relaxed. We do not have a proof showing how general these
assumptions can become. However, we expect that they can be
relaxed enough to cover all well known unimodal distributions
that are decreasing smoothly around their modes. Spurious

distributions, that can not be well approximated by similar
assumptions, might also exist. Encountering a dataset with
such a distribution in practice will lead to an increased
false positive cluster discovery rate. However, we consider
such distributions to be uncommon in real world datasets.
Overall, since we are interested in the practical application
of clustering, based on the analysis presented in this section,
we select the uniform as the appropriate worst case distribution
for M-Drp.

Proposition 3. On a dataset X generated from distribution
D, the distribution of rsizes(Pysy) for any x € X is invariant
to the scale of D.

Proof. Each element z(4) € X(4) is an m-dimensional vector
with coordinates x(A),l < 7 < m. We the scaled version

XB) with x;B) = c- ac;A), for constant c. The euclidean
distance between the points of each dataset is also scaled:
1202 — P = Jlezt) — cul || = ¢f|zD — ul|

Since all distances are scaled, the ordering of distances does
not change. Therefore the k-nearest neighbors of each point
and the k-NN graph remain the same. The distance between
each point and its k-th nearest neighbor is scaled, therefore
the density is scaled inversely: dens(z(P)) = %ﬁm

Since the k-NN graph does not change the minimum
dip point remains the same for all z, with scaled density

i (P
dips(P(}Ax)) = w From Equation 2 rsize, is calcu-
lated as a ratio of density, which are both scaled by the same

constant, therefore:

TSiZ€s(P(,Ba:)) = WZ(“) - TSZ’ZGS(P&?JZ) (12

Since datasets generated from scaled distributions have a 1-
1 correspondence and rsize, is equal for the corresponding
datasets, rsizes is invariant to changes in the scale of the
distribution. O

Proposition 3 allows us to use the uniform distribution in the
interval [0,1]™ , irrespective of the density of a dataset.

D. Computational Complexity

M-DI1p performs c iterations, one for each cluster of the
dataset. For each iteration, it performs r iterations to cal-
culate threshold 6. On each such iteration it generates a
random dataset builds the k-NN graph, and traverses it using
SHALLOWDIPSEARCH. SHALLOWDIPSEARCH is equivalent
to Dijkstra’s algorithm and has complexity O(n - logn + k -
n) = O(n - logn) on the k-NN graph, that has k - n edges.
Constructing the k-NN graph is the most demanding part
of M-Dip. Using a brute force algorithm, which explicitly
calculates all pairwise distances, the k-NN graph is built in
O(n?). Therefore, the total complexity of M-D1p is O(ren?).

This complexity can be significantly improved. From Propo-
sition 3 we know that the threshold is independent from the
scale of the dataset, therefore it is possible to be calculate

threshold once, off-line, for various values of n, and interpolate
them to obtain a curve with the appropriate 6 for each
n. this would eliminate the need for the simulations to be
repeated each time and would make complexity O(cn?). The
dependency on the number of clusters remains because after
removing the points of a cluster the k-NN graph of the dataset
must be modified, which we assume in the worst case is
equivalent to recreating it. Finally, we note that approximate
algorithms exist that construct the k-NN graph with complex-
ity as low as O(n!1*) [6], which can scale to large datasets.

IV. RELATED WORK

The algorithms most closely related to M-DIP are skinny-
dip [1] and dip-means [2]. Both algorithms rely on Hartigan’s
dip test [5]. This test can detect multiple peaks in the distri-
bution of a one-dimensional random variable. It also uses the
uniform as a worst case distribution, to calculate the level of
statistical significance. However, the statistic used to measure
the dips is based on the empirical CDF of the sample and
there is no straightforward way to generalise it to multiple
dimensions, especially considering clusters of arbitrary shape.

Skinny-dip [1] applies the test on one-dimensional linear
projections of the dataset. The algorithm’s assumption is that
clusters will appear as distinct density peaks in the distribution
of a projection. Many projections are evaluated iteratively and,
if multiple peaks are detected, the dataset is partitioned based
on the specific projection. The partitioning is done recursively
so that clusters can be separated in more than one dimensions
in the final result. Skinny-dip is also able to handle background
noise (i.e., points that do not belond to a cluster) which,
however, can only be of uniform distribution. Skinny-dip is
shown to outperform many automatic clustering algorithms,
such as ric [7], sync [8] and stsc [9].

Dip-means [2] aplies the test on pairwise distances between
points of a dataset. For each point the distances to all other
points are calculated. The algorithm assumes that multiple
clusters will appear as distinct peaks in the distribution of
distances of some points with all others. These points are
called split-viewers. In this case as well, the dip test is used
to detect multiple peaks. A cluster is assumed to exist if more
than a percentage of points act as split viewers (1% by default).
After detecting the existence of multiple peaks, dip-means
partitions the points using k-means. Dip-means is shown to
outperform other well known algorithms based on k-means
such as x-means [10] g-means [11] and pg-means [12].

As already mentioned in Section I, the limitation of both
algorithms is their reliance on one dimensional transforma-
tions. Clusters that are separable in multiple dimensions may
be overlapping on each of the applied one-dimensional trans-
formations and vice versa. Moreover, iteratively applying the
test on multiple transformations changes the test’s properties,
due to multiple comparisons [13].

Aside from the density dip methodology, the defining char-
acteristic of M-DIP is that it is automatic. In the following
we present other notable automatic clustering algorithms. In
density based clustering, the most notable automatic algorithm

is hdbscan [4]. Hdbscan partitions the dataset using multiple
thresholds for density, which it obtains using a heuristic called
excess of mass. Its result is equivalent to running dbscan for
all possible density thresholds and selecting those that are
considered important based on the excess of mass metric.
Hdbscan performs this with computational efficiency. Another
class of density based algorithms relies on [14], which detects
clusters by considering, for each point in a dataset, its density
and the distance to the closest point with higher density.
[14] requires the number of clusters as input. The algorithm
presented in [15] approximates the distribution of the density-
distance related metric using a heavy tailed distribution and
uses this approximaiton to select the number of clusters. The
algorithm presented in [3], selects the number of clusters using
the well known silhouette [16] index.

Several automatic algorithms exist in the family of k-means,
aside from dip-means. Gap [17] calculates thresholds of statis-
tical significance for within-cluster dispersion for a clustering
result. These thresholds are calculated through simulations
with the uniform distribution, and are used to select a value for
k. Other algorithms include x-means [10], which recursively
partitions the data using the Akaike or Bayesian Information
Criterion, g-means [11] which tests the hypothesis that each
cluster is generated from a Gaussian and pg-means [12] which
extends g-means by testing all clusters jointly and allows for
Gaussian clusters with different covariances.

V. EVALUATION

Datasets and baselines For the experimental evaluation we
use 10 datasets, 5 synthetic and 5 real-world, and 7 al-
gorithms. The synthetic datasets are depicted in Figure 8.
NORM consists of 35 well separated spherical Gaussian
clusters (n=5000, m=2). OVER consists of 15 overlapping, non
spherical Gaussian clusters (n=5000, m=2). COMP consists of
two uniform clusters of complex shape (n=540, m=2). FADE
consists of elongated fading clusters generated using the beta
distribution (n=1500, m=2). SHAPE consists of 6 uniform
clusters of various shapes and distances (n=788,m=2). Each
datasets tests the algorithms’ ability to discover a particular
type of structure. NORM, OVER and SHAPE are taken from
[18] (named as A2, S3 and aggregate). The real world datasets
are: PEN which comprises 4x4 gray-scale images of hand-
written digits (n=3498, m=16), IRIS which contains instances
of various iris plants (n=150, m=4), AIR which contains flight
passenger data regarding the number of local and foreign
passengers for various airports (n=1584, m=2), BANK which
contains banknote authentication data (n=1372, m=4) and SEG
which contains various statistics concerning image segments
of objects (n=2000, m=20). In the real world datasets the class
label of each instance is used to indicate cluster membership.
PEN, IRIS, BANK and SEG are taken from the UCI repository
[19] and AIR is taken from Kaggle. Datasets NORM, OVER,
PEN and IRIS are well known benchmark datasets. The size
and dimensions of the datasets are inline with related work.
All datasets and the code of our implementation of M-DIPp are
available at http://tiny.cc/Ozps7y.

(2) NORM (b) OVER

(d) COMP (e) SHAPE

(c) FADE
Fig. 8: Synthetic datasets

M-DiIr SKN DM HDB ADP GAP XM GM
NORM (35) 32 25 32 34 31 5 35 35
OVER (15) 15 16 10 25 15 2 1 148
COMP (2) 2 2 6 2 10 4 2 10
FADE (3) 3 3 6 4 4 2 57 36
SHAPE (7) 5 4 5 5 4 3 1 9

TABLE II: Number of clusters

For comparison we use the following algorithms, described
in Section IV: skinny-dip (SKN) [1], dip-means (DM) [2],
hdbscan (HDB) [4], the adaptive density peak detection al-
gorithm from [3] (ADP), gap algorithm (GAP) [17], x-means
(XM) [10] and g-means [11]. We focus mostly on SKN and
DM, upon which we attempt to improve. All algorithms were
used with the default parameters provided in their implemen-
tations. M-DIP was used with o = 0.95 and £ = 30, as
suggested by the analysis of Section III-B. For the evaluation
we use three metrics: normalised mutual information (NMI),
adjusted rand index (ARI) and the number of clusters, for the
synthetic datasets, where the number of clusters is known.

Results Tables II, III, IV and II present the results. M-
Di1p achieves the highest average NMI and ARI scores, by
a significant margin over the second best algorithm, on both
the synthetic (relative improvement: 11% NMI, 30% ARI)
and real world datasets (relative improvement: 13% NMI,
18% ARI). It also achieves the highest score in most datasets
individually. SKN achieves the second best average score in
the real world datasets and HBD is second in the synthetic
datasets. The performance of DM is average overall. Its good
performance on NORM and OVER suggests it requires the
existence of Gaussian clusters. This is justified by its usage
of k-means, to assign points to clusters. Similarly XM and
GM, which assume Gaussian clusters perform well on NORM,
but they do not perform very well on other datasets. Notably,
ADP and HDB perform consistently well on many datasets.
The discrepancy between NMI and ARI scores for HDB
suggests it generates many false positive clusters (e.g., OVER).
Finally, GAP does not perform well overall, as it tends to
underestimate the number of clusters, but has the best score

M-Dir SKN DM HDB ADP GAP XM GM
NORM 097 085 096 085 094 058 099 0.99
OVER 079 077 072 053 079 033 000 0.62
COMP 100 045 052 100 046 000 022 046
FADE 093 068 071 085 074 033 049 045
SHAPE 088 079 087 08 082 0 077 087
AIR 075 066 064 063 059 000 00 046
PEN 078 063 059 073 069 060 054 0.8
IRIS 073 065 065 073 073 069 059 070
BANK 045 043 015 022 005 000 028 029
SEG 061 056 042 062 032 00 046 052
AVG-SN 091 070 075 082 075 024 049 0.67
AVGRL 066 058 049 058 047 025 037 053

TABLE III: Clustering quality (NMI)

M-Dir SKN DM HDB ADP GAP XM GM
NORM 091 056 084 056 084 019 099 0.99
OVER 072 067 051 011 072 010 000 020
COMP 100 055 032 100 020 000 029 020
FADE 094 070 061 089 067 030 026 026
SHAPE 080 073 082 080 077 0 045 0.9
AIR 0.60 055 046 055 046 000 00 0.09
PEN 0.66 048 034 053 053 055 004 028
IRIS 056 053 053 056 056 073 034 061
BANK 032 031 012 008 006 000 001 0.03
SEG 048 035 023 044 010 0 00l 0.14
AVG-SN 087 064 062 067 064 011 039 046
AVGRL 052 044 033 043 034 025 008 023

TABLE IV: Clustering quality (ARI)

in one case (ARI on IRIS dataset). Regarding the number
of discovered clusters (Table II, true number of clusters in
parentheses), M-DIP identifies the correct number on three
out of five datasets and slightly underestimates the number of
clusters on NORM and SHAPE dataset. In comparison, SKN
correctly estimates the number of clusters in two datasets and
DM does not find the correct the number in any dataset.

The advantages of searching for dips directly in the mul-
tidimensional space is illustrated in the examples of Figures
10 and 9. Figure 10 depicts the clusters discovered by M-
Dip and SKN on a location near the center of dataset NORM.
The clustering was performed in the entire dataset but only
a small location is depicted, for clarity. As we can see, in
this case, the linear decision boundaries found by SKN can
not effectively discover the cluster number and the cluster
boundaries. This occurs because clusters that do not overlap
in the original space may overlap in the linear projections,
resulting in decision bounds that run through parts of mul-
tiple clusters, (Figure 10a). On opposite, by considering the
multidimensional space directly, M-DIP can correctly discover
the clusters and their boundaries (Figure 10b). Although this
is illustrated in a specific example, the results suggest that it
occurs in other datasets as well. Even in COMP and FADE
where SKN correctly estimates the number of clusters, their
boundaries are not correct, as suggested by ARI and NMI.

Figure 9 presents a similar example for DM, taken from
dataset OVER, from the bottom left part of the dataset. In this
case neighboring, overlapping clusters are merged together by
DM Figure 9a, instead of being identified as separate. It is not
clear if this is a limitation in detecting the existence of a new
cluster or at correctly discovering their boundaries (or both). In

(b) M-Di1p

Fig. 9: Discovered clusters on an indicative sample of OVER
dataset, for M-DIP and DM

either case, by detecting the dip in the multidimensional space
directly, M-D1P correctly detects the exiting clusters and their
boundaries.

VI. CONCLUSION

Clustering algorithms are used to find groups of similar
items in a dataset. Automatic clustering algorithms achieve
this task without requiring users to input critical parameters.
In this paper we presented M-DIP, an automatic clustering
algorithm which generalises the density dip search method-
ology of [1] and [2] in the multi-dimensional space. M-
Dip works by measuring the density dips on a dataset and
comparing them with a threshold of statistical significance,
which it calculates through simulations. In our experimental
evaluation, M-DIP achieves better results that the existing state
of the art in automatic clustering. Directions for improvement
include studying the effects of k-NN graph’s connectivity in
calculating the threshold threshold of statistical significance 6,
and investigating the use of distance instead of density, which
may result in a more stable metric.

ACKNOWLEDGEMENTS

This work was funded by the EU H2020 projects SLIPO
(731581) and SmartDatalLake (825041) and the the NSRF
2014-2020 project HELIX (5002781).

REFERENCES

[11 S. Maurus and C. Plant, “Skinny-dip: Clustering in a sea of noise,”
KDD, 2016.

[2] A. Kalogeratos and A. Likas, “Dip-means: an incremental clustering
method for estimating the number of clusters,” NIPS, 2012.

., G,
.':. ({',‘5..' o
e o300
N 1
- ‘ '::,.,
8 . ,"t-.
o e .(n

(b) M-Di1p

Fig. 10: Discovered clusters on an indicative sample of NORM
dataset, for M-DIP and SKND

[3] X. Wang and Y. Xu, “Fast clustering using adaptive density peak

[4]
[5]
[6]
[7]
[8]
[9

—

[10]

[11]
[12]
[13]

[14]
[15]

[16]

(17]

[18]

[19]

detection,” Journal of Statistical Methods in Medical Research, 2017.
R. Campello, D. Moulavi, and J. Sander, “Density-based clustering based
on hierarchical density estimates,” PAKDD, 2013.

J. Hartigan and P. Hartigan, “The dip test of unimodality,” The Annals
of Statistics, 1985.

J. Chen, H. Fang, and Y. Saad, “Fast approximate knn graph construction
for high dimensional data via recursive lanczos bisection,” JLMR, 2009.
C. Bhm, C. Faloutsos, J. Pan, and C. Plant., “Robust information-
theoretic clustering,” KDD, 2006.

C. Bhm, C. Plant, J. Shao, and Q. Yang, “Clustering by synchronization,”
KDD, 2010.

L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” NIPS,
2004.

D. Pelleg and A. Moore, “X-means: Extenking k-means with efficient
estimation of the number of clusters,” ICML, 2000.

G. Hamerly and C. Elkan, “Learning the k in k-means,” NIPS, 2003.
Y. Feng and G. Hamerly, “Pg-means: learning the number of clusters in
data,” NIPS, 2006.

Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of the
Royal Statistical Society, 1995.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, 2014.

G. Wang and Q. Song, “Automatic clustering via outward statistical
testing on density metrics,” TKDE, 2016.

P. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, 1987.

R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of
clusters in a data set via the gap statistic,” Journal of the Royal Statistical
Society, 2000.

P. Frianti and S. Sieranoja, “K-means properties on six clustering
benchmark datasets,” 2018. [Online]. Available: http://cs.uef.fi/sipu/
datasets/

D. Dheeru and E. Karra-Taniskidou, “UCI machine learning repository,”
2017. [Online]. Available: http://archive.ics.uci.edu/ml

