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ABSTRACT
Given a set of geospatial objects, the Best Region Search problem

finds the optimal placement of a fixed-size rectangle so that the

value of a user-defined utility function over the enclosed objects is

maximized. The existing algorithm for this problem computes only

the top result. However, this is often quite restrictive in practice and

falls short in providing sufficient insight about the dataset. In this

paper, we introduce the k-BRS problem, and we present a method

for efficiently and progressively computing the next best result for

any number of results k requested by the user. We show that our

approach can accommodate additional constraints. In particular,

we consider the requirement of computing the next best rectangle

that has no or little overlap with the already retrieved ones, which

reduces the repetition and redundancy in the results presented

to the user. Our experimental evaluation demonstrates that our

algorithms are efficient and scalable to large real-world datasets.
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1 INTRODUCTION
Geospatial data continue to grow daily, offering a wealth of infor-

mation about locations and human activities. This can be exploited

in various domains, from geomarketing and tourism to real estate

and urban planning, allowing to identify areas of interest and thus

drive, for instance, decisions about selecting the best location to

open a new store or to place an advertisement.

The Maximizing Range Sum (MaxRS) problem [4] assumes a set

of spatial objects as weighted points in a 2D space and aims at iden-

tifying the optimal location of a fixed-size rectangle that maximizes

the total weight of the enclosed points. Different variations of the

problem have been studied in the past by the computational geom-

etry community [10, 13] and, due to the increasing data volumes,

have also gained focus more recently among the database commu-

nity [1, 2, 4, 6–8, 15, 17, 18]. In particular, the Best Region Search
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(BRS) problem [6] generalizes MaxRS by allowing the scoring func-

tion to be any submodular monotone function rather than being

restricted to the count or sum of weights of the enclosed points.

The BRS problem has numerous applications. Consider, for ex-

ample, a company wishing to open a store at a new location. A

rectangle of a given size centered at the store’s candidate location

can be used to approximate the area from which the store is ex-

pected to draw its potential customers. Then, the score of a location

can be measured by an objective function that could be simply the

number of potential customers in the area or some more complex

function encapsulating various revenue estimation criteria. A simi-

lar example is a tourist looking for the optimal location of a hotel,

aiming to maximize the number or popularity of sites that can be

visited in its vicinity.

However, an inherent limitation of existing formulations and

solutions is that they explicitly target the best, i.e., the top-1, answer
to the query. In many practical scenarios and applications this is

not sufficient. For instance, in the aforementioned examples, it may

not be possible to open a store at the identified best location (e.g.,

if there are no available facilities to rent or purchase); similarly,

all hotels in the area may be occupied or too expensive. Then, the

user needs to examine alternative solutions in decreasing order of

quality, until one is found that meets all desired criteria.

In this paper, we introduce and study the k-Best Region Search
(k-BRS) problem, which searches for a ranked list of the top-k best

rectangles according to the objective score function. As explained

later, existing algorithms for the BRS problem do not apply for the

k-BRS problem. Furthermore, we observe that returning a ranked

list of results based on their objective score still faces an important

shortcoming, namely that the results are usually highly overlapping.

For instance, if R is the best result, then slightly shifting R along

the x- and/or the y-axis leads to another candidate result R′ that
encloses approximately the same set of objects, and is thus very

likely to have a similarly high score. Nevertheless, if R has already

been found to not meet the user’s other criteria or preferences, the

same is also very likely to hold for R′. Returning results that highly
overlap with already seen ones, is most likely redundant.

As a concrete example, consider finding the top rectangles over

a set of Points of Interest in Berlin. Assume that we are interested

in regions of width and height 0.002◦ (∼ 200 meters), and that the

scoring function is count. Figure 1a shows the top-100 rectangles
enclosing the largest number of points. In fact, even though 100

results are retrieved, they essentially draw attention to merely two

locations: there are 26 highly overlapping rectangles in the left

group of results and 74 in the other.

To address this redundancy issue of the unrestricted k-BRS, we
need to select the top-k results in a way that considers not the

individual objective score of each candidate result in isolation, but

rather its marginal gain. This refers to the added value of a new

result in the context of those already selected. We note that similar

https://doi.org/10.1145/3274895.3274965


(a) Top-100 unrestricted. (b) Top-5 in NO mode. (c) Top-5 in PO mode (λ = 0.2). (d) Top-5 in PO mode (λ = 0.3).

Figure 1: Example of top-k regions with different constraints for overlap.

diversification approaches have been taken in information retrieval

[3, 5, 9, 16] and summarization of spatio-textual objects [12, 14].

To that end, we introduce and study the k-Best Region Search with
Marginal Gain (k-BRS-MG) problem. Specifically, we consider two

variants of this problem. In the No Overlap (NO) case, the results
in the top-k list are not allowed to overlap with each other. An

example of the output produced under this setting is shown in

Figure 1b, where the top-5 results are depicted. Notice that these

include the two locations identified before, but also reveal three

additional locations that may be of interest to the user. The second

variant, which we call Partial Overlap (PO), offers a user-tuneable
tradeoff between objective score and allowed overlap in the results.

Specifically, PO uses an exponential decay function to discount the

objective score of candidate results based on their degree of overlap

with already retrieved results. The user can set the value of a single

parameter λ > 0 to control the rate of decay. Smaller values of λ
produces results similar to the case of unrestricted k-BRS, while
larger values favor results similar to the NO case.

Results produced under the PO setting are shown in Figures 1c

and 1d. When λ is set to 0.2, i.e., a relatively small penalty for

overlap, the results indicate three distinct locations with the one on

the left having three overlapping rectangles. When λ is increased to
0.3, one of the overlapping results is discarded in favor of another,

leading to identifying four distinct locations. This shows that by

tuning the decay parameter λ we can get more or less diversified

results in the spectrum of completely allowing overlap to completely

prohibiting overlap.

Our contributions can be briefly summarized below.

• We introduce and formally define the problem of k-Best Re-
gion Search (k-BRS), and we present an efficient progressive

algorithm for it.

• We introduce the problem of k-Best Region Search with

Marginal Gain (k-BRS-MG) that produces diversified results.

We discuss two variants of the problem that differ in the way

they penalize overlaps among results.

• We extend our top-k progressive algorithm for solving the

two variants of the k-BRS-MG problem.

• We present an experimental evaluation of the proposed al-

gorithms using three real-world datasets.

The rest of the paper is structured as follows. Section 2 reviews

related work focusing on the MaxRS and BRS problems. Section 3

defines the two problems (k-BRS and k-BRS-MG), and explains the

challenges involved. Then, Sections 4 and 5 present our solutions

to these problems. Section 6 presents our experimental study, while

Section 7 concludes the paper.

2 RELATEDWORK

Region Search Problems. Various definitions of what consti-

tutes an area of interest in a dataset of spatial objects are possible

(e.g., [11]), leading to several classes of problems. One such family

of problems considers areas of interest represented by rectangles
of fixed width and height. Each rectangle is assigned an objective

score based on the set of points it encloses.

The simplest variant is to compare different rectangles based on

the number of points they contain. This is known as the Maximum
Object Enclosing Rectangle problem, for which a line-sweep-based

algorithm utilizing an interval tree data structure has been pro-

posed [10, 13]. More recently, the Maximizing Range Sum (MaxRS)

problem has been studied [4]. In this case, a set of weighted points

is given, and the goal is to find a rectangular area of fixed size, such

that the sum of the weights of all enclosed points is maximized.

The proposed solution focuses on an external-memory algorithm

that performs an external version of the plane-sweep algorithm,

recursively dividing the entire dataset into smaller sets until they

fit in memory. Furthermore, an (1 − ϵ)-approximate solution for

the MaxRS problem has been presented in [15].

The Best Region Search (BRS) problem has been introduced in [6]

as a generalization of the MaxRS problem. The difference is that the

objective score function used to compute the utility of a rectangle

can be any submodular monotone function. Thus, problem variants

where this function is count or sum can be regarded as specific

instances of this problem formulation. In this paper, we follow this

more generic problem formulation in our definition of the top-k
Best Region Search problem. As the algorithm in [6] is crucial in

explaining our methodology, we later present it in detail.

Various other extensions to these problems have been studied

in the literature. Indicatively, variants of the MaxRS problem have

been considered in road networks [2, 18], where the region to be

identified is defined as a subgraph that does not exceed a given size

constraint. Also, similar problems have been investigated under

bichromatic settings, where two distinct datasets are given as input,

i.e., a set of customers and a set of facilities, and the goal is to find the
optimal location for a new facility tomaximize the served customers

considering also the existing facilities (e.g., [17]). In a streaming

context, the work in [1] presents a generic framework for continuous
MaxRS monitoring based on a branch-and-bound approximation

algorithm with worst-error guarantees. In a similar direction, Top-k
Bursty Regions [7, 8] has been proposed as a continuous query for

the top-k rectangles against streaming spatial objects.

Best Region Search. The BRS algorithmwas proposed in [6]. Each

point is represented by a fixed-size rectangle centered at it. Finding
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Figure 2: Bottom-up sweep and maximal slabs.

the best location to place the result rectangle entails identifying

the regions that are maximal intersections of these rectangles. The

intuition is that if we take a result rectangle centered within such a

maximal region, it will cover a maximal set of points (the rectangles’

centers), and by the property of the scoring function, it will have a

higher objective score than any other result rectangle in its vicinity.

BRS partitions the input space in vertical slices that run parallel

to the y-axis. Each slice is processed by executing a bottom-up scan
over it using a horizontal sweep line. This line moves upwards until

it encounters the bottom or the top edge of a point’s rectangle,

meaning that it enters or exits, respectively, the range of a point.
Exploiting the monotonicity of f , the sweep line continues to move

upwards as long as it encounters bottom edges of rectangles (i.e.,

new points enter its range), and only stops when the top edge of a

rectangle is found (i.e., one of these points now exits its range). The

portion of space between the last encountered bottom edge and the

first encountered top edge constitute a so-called maximal slab.
Figure 2 presents an example with 9 rectangles, where the maxi-

mal slabs discovered by the sweep line are shaded. This bottom-up

scan is equivalent to finding the maximal intersections of the 1D in-

tervals that correspond to the y-extents of the rectangles (depicted

with bold). By the properties of function f , the best rectangle must

cover a maximal set of points, and thus its center must be positioned

within one of the maximal slabs. Moreover, an upper bound for

the score of any rectangle centered within a maximal slab can be

obtained by computing the value of f over the respective set of

points encountered along the way of producing this maximal slab.

The maximal slabs are visited in decreasing order of their upper

bound. They are processed similarly to slices, but being scanned

from left to right using a vertical sweep line. This scan produces a

set ofmaximal regions (not to be confused with the regions, i.e., the

rectangles, to be returned as results). Like maximal slabs, these have

the property that the best rectangle is guaranteed to be centered in

one of those maximal regions. Moreover, the score of a rectangle

centered within a maximal region is equal to the value of f over

the points corresponding to that maximal region. Once a maximal

region is found, the score of the respective rectangle centered in it

is compared to the current best rectangle. If it is higher, it becomes

the new solution, otherwise it is discarded and the search continues.

3 PROBLEM DEFINITION AND CHALLENGES
We first introduce the main concepts and notation used throughout

the paper. Then, we formally define the problem addressed, and we

explain its challenges.
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Figure 3: Slab relationships encoded as a DAG.

3.1 Problem Definition
Assume a set D of points in a two-dimensional space. These may

represent Points of Interest on a map, or any other kind of spatial

object. Each point may be further associated with an arbitrary num-

ber and type of attributes, such as a score denoting its importance

or popularity (e.g., a rating or the number of visits, likes, views, etc.),

keywords or tags representing its type or amenities and services

offered, and so on.

Definition 1 (Region). A region R is a rectangle of fixed width
a and height b. We use R.center to refer to the center of the region.

Note that a region R can be positioned freely anywhere in space,

i.e., its center R.center is not restricted to be one of the points in

D. Without loss of generality, in the rest of the paper we assume

regions of equal width and height, thus simplifying notation by

referring to a single input parameter a = b = ε instead of two

distinct parameters a and b. Also, we often use the terms region

and rectangle interchangeably. Furthermore, we use R.P to denote

the set of points that are contained within region R, i.e.,

R.P = {p ∈ D : p.within(R)}

Definition 2 (Objective Score). Assume a scoring function

f : P → R that assigns a score f (P) to a given set of points P ⊆ D.
The objective score of a region R, denoted as R.score , is the score of
the set of points it contains, i.e.,

R.score = f (R.P)

The function f can be application-specific, measuring the utility
of a region based on its contents. A typical example is an aggre-

gate function that measures the total number or the total score of

the points within the region. Another example is a function that

measures the number of distinct keywords associated to the points

within the region, e.g., as a way to quantify the variety of amenities

and services offered in it.

In this paper, we consider scoring functions that are monotone.
This means that by adding more points to a given set, the objective

score of the set increases (or remains the same), i.e., for any set of

points P ⊆ D and any additional point p ∈ D it holds that:

f (P) ≤ f (P ∪ {p})

This assumption is quite reasonable; for example, all aforemen-

tioned scoring functions are monotone.

Notice that, since a region can be positioned freely anywhere

in space, there can be an infinite number of regions of the same

size that contain the same set of points. To avoid this ambiguity,

we consider the canonical region of a set of points P to be the one

that is centered at the center of the minimum bounding rectangle

(MBR) of P . This allows for a one-to-one correspondence between
a region R and the set of points R.P it contains, ensuring that the

search space of candidate regions is finite (bounded by the size



of the power set of D) and does not contain multiple areas with

exactly the same contents. Thus, for the rest of the paper, we only

consider canonical regions.

We can now define the k-Best Region Search problem.

Problem 1 (k-BRS). Given a set of points D, a monotone scoring
function f , and a region width and height ε , the k-BRS problem is
to find the top-k regions having the maximum objective score, i.e., to
compute an ordered list L of k regions such that:

∀i ∈ [1,k] : Li = arg max

R∈R\L1:i
f (R.P)

where Li denotes the i-th element of L, L1:i denotes the subset of
L containing the first i − 1 elements, and R is the universe of all
canonical regions.

Even by considering only canonical regions, the results returned

by k-BRS can be highly overlapping. To address this, we introduce

a variant that explicitly takes into account overlaps among regions.

That is, we need to select the top-k results in a way that considers

not only the individual objective score of each candidate region,

in isolation, but rather the added value of each new region in the

context of those already selected. More specifically, instead of rank-

ing the regions based on their individual objective score, we use

the notion of marginal gain, an adjusted score that is computed

taking into consideration the already seen results. This requires an

incremental process for building the top-k result set, by starting

from the top-1 result and at each iteration selecting the i-th result

to be the one that has the maximum marginal gain with respect to

the previous i − 1 results.

Definition 3 (Marginal Gain). Given a list L of regions, the
marginal gain (MG) of a region R < L is defined as:

mд(R;L) = γ (R;L) × f (R.P)

where γ (R;L) quantifies the novelty of R with respect to L.

We now present the k-BRS problem variant that retrieves the

top-k best regions based on their marginal gain rather than their

objective score.

Problem 2 (k-BRS-MG). Given a set of points D, a monotone
scoring function f , and a region width and height ε , the k-BRS-MG

problem is to find the top-k regions having the maximum marginal
gain score, i.e., to compute an ordered list L of k regions such that:

∀i ∈ [1,k] : Li = arg max

R∈R\L1:i
mд(R;L1:i )

where Li , L1:i , and R as above.

We propose two flavors of the k-BRS-MG problem that employ

different novelty functions. TheNo Overlap (NO) variant completely

prohibits overlapping regions among the top-k results. In this case,

function γ is defined as follows:

γ
NO
(R;L) =

{
1, if �R′ ∈ L : R.overlaps(R′)

0, otherwise.
(1)

The Partial Overlap (PO) variant discounts the objective score of
a candidate region R based on its degree of overlap with the existing

results in L. We model this using exponential decay. Specifically,

in this case, we define function γ as follows:

γ
PO
(R;L) = e−λ ·τ (R;L) (2)

where λ > 0 is a parameter controlling the rate of decay and τ (R;L)
measures the maximum degree of overlap between R and any of

the results in L, i.e.:

τ (R;L) = max

R′inL

area_size(R.intersection(R′))

area_size(R)

3.2 Challenges
The k-BRS problem and its marginal gain variants cannot be solved

using the algorithm introduced in [6]. There, the problem is to

identify the best region, i.e., top-1 instead of top-k . Adapting the

process to retrieve top-k results instead of only the top-1 is not

straightforward. This is because the basic idea of the BRS algorithm

relies on the fact that the objective score function f is a monotone

function, which implicitly leads to the algorithm being designed

and optimized under the assumption that only the top-1 result

needs to be computed. Essentially, the efficiency of the algorithm

is based on the fact that, during the search, it can skip over regions
that cannot be in the top-1 rank. However, by doing so, once the

top-1 result is identified, it is impossible to continue the search

onwards to retrieve the top-2 result, and so on.

To better understand this, recall that each maximal slab or region

is preceded and succeeded by a series of other slabs or regions,

respectively. When only the top-1 result is needed, the sweep line

can safely skip those and only examine the maximal one, since it is

certain that its score will be higher. For example, in Figure 2, BRS

only examines candidate results that are centered within the shaded

areas of the space. Essentially, we can think of maximal slabs and

regions as the positions of local maxima in the search space. It is

guaranteed that the global maximum will be one of those. However,

when top-k results are needed, with k > 1, solutions around a local

maximum cannot be ignored, since they may be (and very often are)

better than those provided by other local maxima. The implication

is that to correctly identify the top-k results the algorithm needs to

be able to expand the search to include the space around the local

maxima so that no valid solutions are missed.

Finally, another drawback of the BRS algorithm has to do with

the way it partitions the space. Specifically, it partitions the space

across only one dimension, in particular across the x-axis, creating

vertical slices that run in parallel to the y-axis. The width of a slice

can be controlled by a parameter and can be set to be as small

as the width of a region; however, the height of a slice is equal

to the height of the whole space occupied by the points in the

dataset. This may be sufficient for small datasets where the height

of the whole space is not much larger than the height of a region.

This is often not the case in practice. For example, the user may

wish to identify top-k regions having size in the order of a few

building blocks within a large metropolitan area or even a whole

country. Moreover, often in real-world spatial datasets the points

do not follow a uniform spatial distribution but instead are rather

skewed, with certain locations having a high density of points while

others being very sparse. Partitioning the dataset only across one

dimension typically fails to reflect this skewness in the distribution

of the points.



Algorithm 1: k-BRS
Input: Set of points D; Objective score function f ; Region width and height

ε ; Number of results k
Output: Ranked list L of top-k regions

▷ Initialization

1 Q ← ∅, L ← ∅

2 G ← CreateGrid(D, ε )
3 for C ∈ G do
4 U B(C) ← ComputeCellUpperBound(C, neiдhbors(C), f )
5 Q .add(C)

6 while |L | < k & |Q | > 0 do
7 E ← Q .next ()

▷ Processing a Cell

8 if E .type = Cell then
9 RE ← GetRectangles(E)

10 RE ← sort(RE, Y )
11 S ← Sweep(RE )

12 Q .addAll(S)

▷ Processing a Slab

13 if E .type = Slab then
14 RE ← GetRectangles(E)
15 RE ← sort(RE, X )
16 T ← Sweep(RE )

17 Q .addAll(T)

18 S′ ← GetChildren(S)

19 Q .addAll(S′)

▷ Processing a Region

20 if E .type = Region then
21 Rε ← CatchmentArea(E)
22 L .add(Rε )
23 T′ ← GetChildren(T)

24 Q .addAll(T′)

25 return L

Algorithm 2: Sweep
Input: Set of rectangle edges RE
Output: Set of slabs S

1 S ← �; P ← �
2 previous← close

3 for each edge R .e in RE do
4 if R .e is open then
5 if previous is close then
6 S ← new slab; S .before = 0; S .after = 0; S ← S ∪ {S }
7 previous← open

8 else
9 S .before++

10 P ← P ∪ {R }
11 if R .e is close then
12 if previous is open then
13 S .P ← P
14 previous← close

15 S .after++
16 P ← P ∖ {R }
17 return S

4 ALGORITHM FOR k-BRS
Next, we present our algorithm for the k-BRS problem. Its key

idea is to sweep the space and examine subareas (e.g., slabs and

regions) besides the maximal ones, as this is necessary to identify

the next best region. However, in contrast to an exhaustive search
that considers all subareas, e.g., all slabs in Figure 2, the k-BRS
algorithm examines slabs in a principled way, considering one only

when necessary.

The k-BRS algorithm, shown in Algorithm 1, consists of an ini-

tialization phase, and a main loop where elements from a priority

queue are dequeued and processed. There are three types of ele-

ments (cells, slabs, and regions) and their processing differs. In what

follows and similar to BRS, we represent each point in the input

dataset as an ε × ε rectangle centered around the point.

Initialization. Our k-BRS algorithm employs a different initial-

ization phase than BRS. Instead of partitioning the space in one

dimension, i.e., in a series of vertical slices running parallel to the

y-axis, it constructs a uniform grid with cells of size ε × ε (Line 2).
By doing so, it partitions the space across both dimensions and

with a resolution that matches that of the regions to be computed.

In this way, it adapts to the spatial distribution of the input dataset

better, allowing the search to focus around the most promising cells

while pruning early other portions of the space that cannot produce

regions with sufficiently high score.

For each cellC in the grid, we can derive an upper boundUB(C)
for the objective score of any region R centered within C (Line 4).

LetC .P denote the points inside cellC . Then,UB(C) can be obtained
by computing the value of f over the union of points in C and its

eight adjacent cells, denoted by neiдhbors(C), as follows:

UB(C) = f
(
∪C ′∈NCC

′.P
)

where NC = {C} ∪ neiдhbors(C). The above upper bound holds

because any region centered within C may contain at most those

points located inside C and its neighboring cells. Note that it is

possible to derive a tighter upper bound by only considering those

points in the neighboring cells that are located within a buffer of

width ε/2 from the borders of C . This implies a trade-off between

the overhead of this extra filtering step and any resulting time

savings from having a tighter upper bound. In either case, this does

not affect the correctness of the algorithm.

Each cell is then added to a priority queue Q in descending order

of its upper bound (Line 5). This priority queue is used throughout

the algorithm to navigate the search space of candidate solutions,

allowing to retrieve the top-k results progressively. To achieve this,

Q holds two other types of entries, besides cells. Reusing the ter-

minology of the BRS algorithm, these other types of entries are

called slabs and regions, which are generated and inserted in the

queue as will be explained later on. Every time the next element E
is extracted from Q, the algorithm checks its type, i.e., whether it

is a cell, a slab, or a region, and processes it accordingly.

Processing aCell. Processing a cellC essentially works in a similar

way as processing a slice in BRS. Let RC denote the set of ε ×
ε rectangles corresponding to the points in C and its neighbors

(Line 9). These are sorted bottom-up according to their y-coordinate

(Line 10). Then, a horizontal sweep line is used to scan the cell

bottom-up (Line 11). During this scan, the set of maximal slabs

S is identified and emitted. For each maximal slab, the algorithm

computes its corresponding upper bound UB(S) = f (S .P), and
inserts the maximal slab in the Q with key its upper bound (Line 12).

In addition, and contrary to BRS, additional information is main-

tained per slab so that the search can continue beyond the maximal

slabs, when necessary. Assume that the rectangles of Figure 2 cor-

respond to the points of a cell and its neighbors. As discussed, the

sweep line identifies the intersections of rectangles, or slabs, along



the y-axis also depicted. Observe that all slabs can be structured

as the directed acyclic graph (DAG) depicted in Figure 3. An edge

between two slabs exists if they touch each other, or equivalently if

their intersection sets differ by one element (a rectangle). Moreover,

a slab is a parent of another if the former’s intersection set contains

the latter’s. Clearly, maximal slabs, shown bold, have no parents.

The top-k BRS algorithm stores within each maximal slab a

partition of the DAG, which we call slab tree, that has the following
properties: (i) it is a binary tree rooted at a maximal slab, (ii) each

node other than the root has at most one child, (iii) the leftmost

leaf (before the root in the order of the sweep line) corresponds to

a slab that either has no child or its child has another parent in the

DAG, and (iv) the rightmost leaf (after the root in the order of the

sweep line) corresponds to a slab that has no child in the DAG. The

partition of the DAG into slab trees is shown in Figure 3.

An efficient way to encode a slab tree for S is to store the points

of the maximal slab in a list S .P , sorted in the order they were

encountered by the sweep line, along with two counters, S .before,
S .after, that indicate the number of children before and after S in

the order of the sweep line. For example, in Figure 3, the maximal

slab {3, 4, 5, 6, 7} is encoded by its list of points S .P = {3, 4, 5, 6, 7},
and counters S .before = 3, S .after = 1.

Algorithm 2 presents in detail the Sweep procedure that scans a

set of rectangles and creates the maximal slabs and their associated

slab trees. Its operation is easily understood in the context of the

DAG encoding of the slab relationships, e.g., Figure 3. Conceptually,

Algorithm 2 scans the DAG from left to right. When a rectangle

opens (lines 4–10), i.e., its first edge is encountered, we are moving

up on the DAG, while when a rectangle closes (lines 11–16), i.e.,

its second edge is encountered, we are moving down on the DAG.

When we move up for the first time since moving down (lines 5–7),

a new slab tree is generated (line 6) where the maximal slab will

be later determined. On the other hand, when we move down for

the first time since moving up (lines 11–14), the maximal slab is

identified.

Processing a Slab. Whenever a slab S is extracted from Q, its

processing involves now two actions. The first action is similar

to scanning a cell, but is now performed along the x-axis. That is,

the set of rectangles RS corresponding to the points in the slab is

constructed and sorted according to their x-coordinate (Lines 14

and 15). Then, a vertical sweep line is used to scan the slab from left

to right, identifying along the way the set of all maximal regions T .

Each maximal regionT ∈ T is associated to a set of pointsT .P and

a corresponding upper bound UB(T ) = f (T .P). Once computed,

these maximal regions are inserted in Q (Line 17). Notice that

this point differs from the processing in BRS, where the algorithm

always maintains a single maximal region, which is the best region

encountered so far, and eventually the last “surviving” region is

the output of the algorithm. Instead, we insert all found maximal

regions inQ (including subsequent non-maximal ones) to be further

processed in future steps.

The second action is essentially what allows our algorithm to

explore the search space around local maxima, thus being able to

correctly and progressively retrieve the top-k results for any value

of k . Once a slab S has been scanned, in addition to inserting in

Q the obtained maximal regions, we also create at most two new

slabs, that correspond to the children of S in its slab tree. Each child

will inherit the slab sub-tree rooted at itself. The algorithm then

computes an upper bound for the children slabs, and inserts them

in Q for future processing (Lines 18 and 19). In this way, the top-k
BRS algorithm starts examining maximal slabs, and when necessary

“backtracks” to examine non-maximal slabs, and generate additional

candidate results in a lazy and progressive manner.

The GetChildren procedure generates at most two slabs Sback
and Sf ore from a slab S . Specifically, Sback is createdwhen S .before >
0 and gets as its list of points all points in S except the last one.

Conversely, Sf ore is created when S .after > 0 and gets as its list of

points all points in S except the first one.

Processing a Region. Finally, when a region T is extracted from

Q, it is processed in a similar manner as a slab. Again, there are two

actions involved. The first is to treat the region itself as a candidate

result. That is, the rectangle R of size ε × ε centered at the center

of this region is generated (Line 21). The objective score of R is

equal to that of T since, by construction, they contain the same

set of points. Thus, R is inserted in the top-k results (Line 22). The

second action involves generating the children regions T ′ from T ,
applying the same mechanism as described above for slabs. These

are also inserted back to Q to be visited in the future (Lines 23

and 24).

Correctness. The algorithm terminates correctly once k results

have been found or once there are no more elements left in Q.

Lemma 1. Algorithm k-BRS correctly identifies the top-k regions
ranked by their objective score.

Proof. To establish the correctness of the algorithm, we need

to establish the following two points: (i) that the search conducted

by the algorithm is complete, i.e., it cannot miss any candidate

solutions, and (ii) that the termination condition is correct.

The first is guaranteed by the mechanism for generating de-

rived slabs and regions starting from maximal slabs and maximal

regions, respectively. Because all slabs/regions are contained in

the slab/region trees associated with the maximal slabs/regions, all

candidate rectangles will eventually be produced for examination.

The second point is established by the correctness of the up-

per bounds computed for the elements in the priority queue. Any

rectangle resulting from an element (i.e., a cell, slab or region) in

the queue will contain a subset of the points associated with that

element. Thus, given that the objective score function f is a mono-

tone function, the objective score of that rectangle cannot be higher

than the computed upper bound for the respective element. Conse-

quently, when a result is found, during an iteration of the algorithm,

it is guaranteed that none of the elements remaining in the priority

queue can produce another result with higher score than it. Hence,

it is safe to insert this result in the top-k list, and to terminate the

search once k results have been retrieved. □

5 ALGORITHM FOR k-BRS-MG
The important characteristic of the k-BRS algorithm is that it can

progressively return the next best result. This allows for a natural

mechanism to reevaluate the utility of the next result in the context

of the already found ones. We explain this in the following, showing



how it applies to the k-BRS-MG problem under the NO and PO
variants.

NO variant. In the case of non-overlapping results, this can be ac-

commodated in a rather straightforward way by introducing an

additional check at the point where a result is returned. Specifically,

recall that when a region T is dequeued from the priority queue

Q , it is inserted in the top-k list of results. Instead, in this mode of

operation, the algorithm first checks whether the rectangle R corre-

sponding to this region T is overlapping with any of the currently

existing rectangles in the top-k list L. If so, then T is discarded,

otherwise it is inserted in L. Thus, as before, upon polling a region

fromQ , a decision can be made immediately about it. The difference

is that now the decision may be to discard this candidate result

instead of always adding it in the top-k results.

PO variant. The case of partial overlap can be handledwith a similar

rationale, with certain adaptations described next. Again, when a

region is extracted from Q , the corresponding rectangle needs to
be evaluated first, in order to check whether or not it qualifies

as the next top-k result. This check now involves computing the

maximum degree of overlap between this rectangle and any other in

the current top-k list, and then using Equations 2 and 3 to compute

themarginal gain of this candidate result with respect to the existing

ones. The outcomes of this check are now as follows. If the marginal

gain is equal to the score of this element according to which it was

extracted from Q , it means that this is indeed the next best result,

and thus it can be inserted in the top-k list. Otherwise, if this check

resulted in a decrease of the element’s score, it is pushed back in Q
to await for possibly further examination in the future.

Note that it is possible to avoid repeated calculations of the

marginal gain of a candidate result as follows. For each visited

region, we maintain a counter that indicates the number of results

in the top-k list at the last time the marginal gain of this region was

computed. Thus, upon extracting a region T from Q , we first check

this counter. If it is equal to the current size of L, it means that no

other results have been found in the meantime, hence T is the next

result to add in L. Otherwise, the aforementioned check needs to

be performed to determine whether to keep this result or push it

back to Q . Notice that as additional results are being added in L,

the marginal gain of any candidate result can never increase. That

is, the upper bound of each element in Q continues to be a valid

upper bound, as Lemma 2 shows. Thus, once a rectangle is found

having a marginal gain higher than the next top element in Q , it is

safe to add it to the result set.

The following two lemmas hold for both variants and prove the

correctness of the k-BRS-MG algorithm.

Lemma 2. Given a list L of rectangles, the upper bound UB(X ) of
a queue element X (cell, slab, or region) computed as in Section 4 is
an upper bound to the marginal gain of any rectangle containing a
subset of points from X .P .

Proof. From Section 4, we know that the upper boundUB(X ) of
a queue element X is an upper bound of the score of any rectangle

R containing a subset of points from X .P . Now, observe that given
a list L of rectangles, the score of a rectangle R < L is an upper

bound to its marginal gain, i.e., f (R.P) ≥ mд(R;L). This is because
the novelty γ (R;L) is at most 1 in the NO and PO (for any λ > 0)

modes. Thus, combining the two results, we get thatUB(X ) is also
an upper bound to the marginal gain of R. □

Lemma 3. The algorithm correctly finds the solution to the k-BRS-
MG problem.

Proof. It suffices to show that at the n-th step of the algorithm,

i.e., when the top-(n − 1) regions are found, the algorithm correctly

identifies the next best region. This step terminates when a region

with up-to-date marginal gain is extracted from the queue. At that

point, Lemma 2 guarantees that all other queue elements cannot

contain a candidate result with greater marginal gain.

The last thing we need to show is that any non-seen region,

i.e., that has never appeared in the queue, cannot have been the

next best region. There are three cases for a non-seen region. First,

a non-seen region whose slab was seen, means that there was

always in the queue another region of the same slab that had better

marginal score than it. This holds because of the way regions within

a slab are examined. Second, a non-seen region whose parent slab

was not seen and whose parent cell was dequeued, means that

there was always in Q another sibling slab that had a better upper

bound. This again holds because of the way slabs within a cell

are examined. Third, a non-seen region whose parent cell was not

dequeued, means that there was always inQ a cell that had a better

upper bound. This holds as all cells enter in the queue. □

A final remark concerns an additional optimization for the PO
mode. The idea is to lazily compute tighter upper bounds for cells

and slabs. Specifically, once a cell or slab is extracted from Q , the
upper bound of its marginal gain is lazily updated according to

Lemma 4. If the new upper bound is lower than before, it is pushed

back to Q instead of being processed. Again here we can avoid

repeated calculations by maintaining a counter indicating the size

of the top-k list when the previous marginal gain was computed,

so that the update only needs to take place if new results have been

found in the meantime.

Lemma 4. Given a list L of rectangles, and an element (cell or
slab) X , an upper bound to the marginal gain of any rectangle that
contains a subset of points from X is given by:

UB(X ;L) = f (S .P) × e−λ ·∆(X ;L), where

∆(X ;L) = max

R∈L
δ (X ,R),

δ (X ,R) = 1 −
min (area_size(X .ext ∖ R), area_size(R))

area_size(R)
,

and X .ext denotes the rectangle produced by expanding the borders
of X by ε/2.

Proof. Any rectangle centered within X is guaranteed to be

fully contained within X .ext . Consider a rectangle R within the

list L. Observe that the size of the area X .ext ∖ R indicates how

much free space exists in X .ext that is not overlapping with R.
Hence, any rectangle fully contained within X .ext , will have at

most area_size(X .ext ∖ R) overlap with R and also certainly not

more than its own area size area_size(R).
Therefore, δ (X ,R) is a lower bound δmin (X ,R) on the degree

of overlap between any rectangle within X and the rectangle R. A



lower bound on the maximum degree of overlap between any rec-

tangle within X and the list L is then computed by ∆(X ;L), which

takes the maximum of the previous value across any rectangle in

L. Plugging ∆(X ;L) into function γ gives us an upper bound to

the marginal gain of any rectangle within X . □

6 EXPERIMENTAL EVALUATION
In the following, we present an experimental evaluation of our

approach, examining the behavior of our algorithms with differ-

ent datasets. Specifically, we conducted experiments using three

real-world datasets containing Points of Interest (POIs) from Open-

StreetMap, covering a large number of different categories, such

as entertainment, commerce, health, transport and tourism. The

three datasets used correspond to the metropolitan areas of Berlin,

London and Paris. They contain 53,506, 85,187, and 118,985 POIs,

respectively. All algorithms were implemented in Java, and the

experiments were conducted on a server with Intel Xeon E5-2420

v2 CPU with 2.20 GHz processor and 64GB RAM running Ubuntu.

6.1 Comparison Based on Marginal Gain
The first experiment aims at providing insight about the quality

of the results returned by each ranking method in terms of their

novelty. Recall that our motivation is to present to the user a ranked

list of rectangles so that (i) their objective score measured by a

function f over their enclosed points is maximized, and (ii) the

overlap among these rectangles is minimized to avoid repetition

and redundancy in the information shown to the user. In our model,

the tolerance of a user to this repetition is controlled by the decay

constant λ (see Equation 2). The higher the value of λ, the more

dissatisfied the user would be by receiving overlapping results.

We conduct this experiment as follows. We assume that the

user has a preference indicated by the selected value of λ, and the

system supports three modes of operation for ranking the results:

(i) Allow Overlap (AO) selects and ranks candidate results based only
on their objective score, disregarding the criterion of overlap; (ii) No
Overlap (NO) ranks candidate solutions according to their objective

score but excludes any results that overlap with previously selected

ones (i.e., it uses the marginal gain resulting from the function

γ
NO
(L,R) defined in Equation 1); (iii) Partial Overlap (PO) ranks

results using the marginal gain with exponential decay, i.e., the

function γ
PO
(L,R) defined in Equation 2. For the PO mode, the user

can set the parameter λ to the preferred value, and retrieve results

accordingly. In contrast, for the modes AO and NO, the user has no
other control over the results, besides this boolean choice. Thus,

we then measure the marginal gain of each result in the top-k list

for a user having the specified preference for λ.
For this experiment, we set the default value of parameter k

to 10. Also, the objective score of each result is normalized in the

interval [0, 1] by dividing it with the objective score of the top-1

result. Notice that the top-1 result is the same in all aforementioned

modes of operation, AO, NO and PO — specifically, it is the result

with the maximum objective score. We set the region width and

height ε to 0.001◦ (≈ 100 meters). This specifies the size of the

rectangles to be identified and hence controls also the resolution of

the constructed grid. Finally, we vary λ to the values 0.3, 0.4, 0.5.

The results of this experiment are shown in Figure 4. When

the ranking algorithm operates in the AO mode, we can always

observe a very sharp decrease of the marginal gain already in the

top-2 result, which implies that the next retrieved result is highly

overlapping with the previous one. Then, the marginal gain remains

at these levels for all subsequent results, with little variation. A

noticeable case is the top-4 result in Paris, which has a very high

marginal gain, compared to that of the top-1 result. In fact, what has

happened in this case is that, although the second and third results

had a high overlap with the first one, and thus a reduced marginal

gain, in the fourth position the algorithm returned a result with

similarly high objective score but located in a different area of the

city, thus not overlapping with the previously seen ones. Still, the

subsequent results were also lying in either of these two areas, thus

again having a high degree of overlap and accordingly a smaller

marginal gain. Something similar, but to a smaller extent, can be

noticed with the result at rank 9.

Overall, for all values of λ, the marginal gain of the top-k re-

sults returned by AO deteriorates quickly. To make matters worse,

although it is possible to find interesting results further down the

list (such as the case of the top-4 result mentioned above), there

is no way of knowing if and when a more interesting result will

suddenly come along. This means that, for a user who wishes to

retrieve and examine results progressively, it is unclear at which

point to end the process.

In contrast, the ranking achieved by the modes NO and PO yields

results with much higher marginal gain. The difference is smaller

in the Berlin dataset, which probably suggests that there is a single

or just a few locations having a high concentration of POIs, thus

making it more difficult to find diverse results that still have a high

objective score, whereas in the London and Paris datasets there

may exist a larger number of different areas offering results with

high objective score.

Overall, we observe that the marginal gain of both NO and PO
decreases at a much lower rate compared to that of AO. Nevertheless,
after some point, depending on the selected value for the decay

constant λ, the marginal gain of the results returned by NO drops
below that of AO. The reason is the following. Being restricted

to only return non-overlapping rectangles, NO is inevitably led,

after some point, to select rectangles having lower objective scores.

Contrary, PO can retrieve results with higher marginal gain at all

positions in the list, since it is flexible in balancing the two factors

of high objective score and low overlap. Thus, at the beginning it

is able to favor non-overlapping rectangles that have comparable

objective score to overlapping ones (similarly to NO and conversely

to AO). Once the objective score of non-overlapping rectangles starts
to drop significantly, it can still admit overlapping ones if their

objective score is high enough to compensate for the overlap.

In conclusion, this set of experiments highlights the flexibility

offered by PO in returning novel top-k best regions, in contrast to

the rigidity of AO and NO.

6.2 Comparison Based on Execution Time
Next, we examine the execution time for each of the three rank-

ing modes, AO, NO and PO, with respect to the parameters k and ε .
Moreover, for comparison, we use as baseline an exhaustive search
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Figure 4: Marginal gain of the top-k retrieved catchment areas by each method.
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Figure 5: Execution time varying k .

method for the PO mode, which we refer to as POX. Note that POX
returns the same top-k list, and generally follows the same hier-

archical scan process with PO. The difference lies in that POX does
not progressively scan the slabs, exploiting their relationships as

captured by the DAG (e.g., see Figure 3). Instead, while executing

a sweep, it generates and adds to the queue all encountered slabs

or regions. This guarantees the completeness of the algorithm, i.e.,

that the search space of candidate solutions will eventually be fully

explored and no results will be missed or produced in wrong order.

Nevertheless, as we will see next in the experiments, it fails to do

so efficiently, thus allowing to appreciate the advantages of the

optimized operation of PO.
In the conducted experiments, we use ε = 0.001◦ as the default

value when varying k , and set k = 10 when varying ε . For PO,
we use 0.4 as the default value for λ. The results are shown in

Figures 5 and 6, respectively. Clearly, AO is the fastest method for
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Figure 6: Execution time varying ε .

retrieving a top-k list of results. This is expected, because in this

case the algorithm only needs to search for the next rectangle

with the highest objective score. As soon as this is found, it is

added to the list without requiring any additional checks that could

potentially disqualify it or diminish its marginal gain. Moreover,

retrieving subsequent results is relatively fast. Once the grid has

been constructed, the priority queue has been initialized, and the

top few cells with the highest upper bound have been scanned to

identify the top-1 result, then there is a readily available pool of

next candidate results to draw from. Nevertheless, AO still suffers
from an increase in execution time when ε increases, although to a

lower extent compared to NO and PO.
Regarding the last two, both have increased execution times com-

pared to AO. This is expected, since a significantly larger number of

candidate results needs to be examined. Specifically, NO needs to con-
tinue searching for the next best rectangle until a non-overlapping

one is found, whereas PO needs to reinsert a candidate rectangle

pulled from the queue back to it if it turns out that its marginal gain

is now decreased due to other rectangles having been selected in

the meantime. Overall, the two methods have comparable perfor-

mance. Thus, given that PO allows to tune the preference between

objective score and repetition in the retrieved results, while NO does
not provide this flexibility, these results indicate that choosing PO
between the two is preferable.

It is worth noting that the baseline POX exhibits a significantly
higher execution time than all other algorithms in all experiments.

This is especially apparent when increasing the value of ε (notably,
for ε = 0.002◦ in the London dataset, the execution of POX took

more than 10 minutes and is thus omitted from the plot). This poor

performance of POX is attributed to its naive scanning strategy. As

explained, during the sweep it eagerly adds all encountered slabs

and regions into the priority queue, thus incurring a significant

overhead both in terms of memory use and processing time. Instead,

the scanning strategy employed by PO efficiently organizes the

maximal slabs/regions and their derived ones, allowing to explore

the search space more flexibly and on demand, while still allowing

for progressive retrieval of the top-k results.

7 CONCLUSIONS
In this work, we studied practical variants of the Best Region Search
problem, which seeks the best location for a fixed-size rectangle

over a set of geospatial objects so as to maximize a user-defined

utility function over its contents. Specifically, we introduced the

top-k version where additional results are requested and computed

progressively. To overcome repetition and redundancy in the top-k
results returned to the user, we proposed diversified variants of

the ranking criterion that take into account the degree of overlap

among the retrieved results in a way that can be tuned according to

the user’s preferences for novelty. Our proposed algorithms were

shown to be efficient when evaluated on real-world datasets.
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