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ABSTRACT
We consider a centralized server that receives streaming updates

from numerous moving objects regarding their current where-

abouts. However, each object always relays its location cloaked

into a broader uncertainty region under a Bivariate Gaussian model

of varying densities. We wish to monitor a large number of contin-

uous queries, each seeking k objects nearest to its own focal point

with likelihood above a given threshold, e.g., “which of my friends

are currently the k = 3 closest to our preferred café with probability

over 75%”. Since an exhaustive evaluation would be prohibitive, we

develop heuristics based on spatial and probabilistic properties of

the uncertainty model, and promptly issue approximate, yet reliable

answers with con�dence margins. We conducted a comprehensive

empirical study to assess the performance and response quality of

the proposed methodology, con�rming that it can e�ciently cope

with large numbers of moving Gaussian objects under �uctuating

uncertainty conditions, while also o�ering timely response with

tolerable error to multiple queries of varying speci�cations.
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1 INTRODUCTION
A wide range of modern applications deal with imprecise or un-

certain data (sensor readings, text, locations, etc.), opening new

perspectives for their modeling and management. Particularly re-

garding spatial information, uncertainty can be either locational or

existential [2]. Under a locational model, an object always exists,
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but its location is uncertain and described by a probability distribu-

tion. �is is totally di�erent from an existential model, where each

object has a precise location but it appears with a given probability.

We strictly focus on locational uncertainty of moving objects

(e.g., people, sensors), each with an uncertainty region according

to a probability distribution. If this distribution is discrete, then

location is modeled by a probability mass function (pmf) as in [11],

i.e., by a number of discrete samples each of a probability that the

object may be located there. Otherwise, distribution is continuous
[8, 19], such as uniform or Gaussian, de�ned by a probability den-
sity function (pdf) and employing random variables to express the

varying probability of an object to be in a given location.

In this work, we consider a monitoring application that accepts

streaming updates of such uncertain locations and provides timely

response to continuous k-nearest neighbor (kNN) queries. Of course,

kNN search has been studied a lot, mostly in spatial databases

[10, 17] and in continuous monitoring over moving objects like

[15, 21, 22]. Despite their real-world impact, such state-of-the-art

kNN algorithms consider objects with exact coordinates. So, they

cannot be applied over uncertain locations, which require special-

ized methods like [8, 11, 18, 23]. We take a di�erent perspective and

suggest a novel, probabilistic kNN monitoring, assuming that uncer-

tain locations have Bivariate Gaussian pdf of varying characteristics.

We propose a methodology that searches amongst moving Gaussian

objects and returns the k nearest to a given focal query point with

probability above a query-speci�ed threshold θ . For instance, in a

geosocial networking application with such a Gaussian model for

user locations, a user may wish to get noti�ed for her k = 3 friends

who are probably closest (say, with probability over 75%) to a given

point of interest, e.g., a bar or a sporting venue. Focal points may

also be moving, yet they always have exact coordinates. In our

se�ing, a centralized server should e�ciently process incoming

uncertainty regions and update its response to such continuous

kNN queries. But Gaussian distribution can describe uncertainty in

many more applications. In robotics, use of Gaussian pdf is common

in modeling the location of observed objects. And in environmental

monitoring, it can suitably model noise e�ects or CO2 emissions

from vehicles collected via on-board sensors.

Due to the inherent uncertainty in streaming positional updates

relayed by numerous moving objects, a central processor can only

provide approximate kNN results. Issuing exact answers would in-

cur prohibitive cost, since multiple queries of di�erent parameters

need continuous re-evaluation against frequently changing uncer-

tain locations; so eventually performance would slump. Besides, an

approximation algorithm is more realistic, given the probabilistic

nature of the underlying spatiotemporal data that cannot possibly

eliminate quality �aws in the expensively paid “exact” answers.
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Table 1: Notations
µ Mean of Bivariate Gaussian pdf of object o, i.e., its coordinates (µx , µy )
σ Standard deviation of Bivariate Gaussian pdf of object o per dimension x, y
Σ Discrete uncertainty levels {σ0, σ1, . . . , σn−1 } for locations

ro Truncated uncertainty region of object o at radius 3σ around its mean µ
Vσ Discretized probabilistic veri�er for uncertainty level σ ∈ Σ
δ Side length of each square-shaped elementary box ε in every veri�er

λ Granularity (in elementary boxes per dimension) of a veri�er

τ Timestamp value in uncertain locations or query speci�cations

q Focal point of interest to a kθNN query

k Number of nearest neighbors to search for a given focal point

θ Cuto� threshold for qualifying kθNN objects

Q Result set of qualifying kθNN objects to query q
Pc Circular coverage probability around focal point q
P̂b Box coverage probability estimated from elementary boxes around q
dθk Largest (k th ) cuto� distance at threshold θ amongst objects in result Q
ξ Least count of elementary boxes required to a�ain probability > θ
G Regular grid partitioning of the monitored area into square equi-sized cells

Θ A set {θ1, θ2, . . . , θm } of m typical threshold values

B Lookup of precomputed ξ -bounds at various distances and thresholds in Θ

dbk Most extreme box distance from q to the k th object in result Q
A Auxiliary list of guard objects for query q , one per uncertainty level σ ∈ Σ

�e Gaussian uncertainty of each object may be of varying den-

sity, essentially cloaking its position in a broader area and thus

allowing varying levels of uncertainty. In general, the larger the

spread of such a region, the more uncertain the location. In order to

get the most probable kNN results to a given query, only those that

qualify above a prespeci�ed threshold θ are returned (e.g., θ = 0.75).

To o�er answers of good quality in near real-time, we suggest a

discretization scheme for uncertainty regions and employ several

novel heuristics that can e�ectively prune the search space and

choose candidates most likely to qualify for the �nal response.

To the best of our knowledge, this is the �rst work on continuous

probabilistic kNN search over moving objects modeled speci�cally

with a Bivariate Gaussian distribution. In particular, our contribu-

tions can be summarized as follows:

• We model object locations as a stream of moving Bivariate

Gaussians with dynamically updated densities (Section 2).

• We introduce a speci�cation for probabilistic k-nearest

neighbor search over uncertain objects (calledkθNN queries)

employing thresholds to validate candidates (Section 3).

• We develop an approximation strategy for online kθNN

monitoring, introducing pruning heuristics to e�ectively

avoid examination of non-qualifying objects (Section 4).

• We empirically demonstrate that this methodology can

provide timely results to multiple continuouskθNN queries

against numerous objects of varying levels of uncertainty

with tolerable concession to quality of results (Section 5).

2 UNCERTAINTY MODEL
We consider a large number N of uncertain objects moving on the

2-D Euclidean plane and communicating with a server. Messages

relayed to the server either notify about updates in the cloaked

positions of objects or modify speci�cations of spatial queries. All

messages (object and query updates alike) are timestamped accord-

ing to a global clock at distinct instants τ (e.g., every few seconds

or minutes). Next, we formalize this application scenario in detail.

Table 1 summarizes the notations used throughout the paper.

(a) Probability density (b) Truncated uncertainty region ro

Figure 1: Standard Bivariate Gaussian distribution N(0, 1)

2.1 Object Locations as Bivariate Gaussians
Let O = {o1,o2, . . . ,oN } a set of N uniquely identi�ed uncertain

objects. For each monitored object o ∈ O , the server maintains an

uncertainty region modeled by Bivariate Gaussian (a.k.a. Normal)

random variables X , Y with mean µ = (µx , µy ) and standard de-

viation (σx ,σy ) over axes x ,y. Assuming that objects are moving

freely, X and Y are independent, hence uncorrelated. Also, location

coordinates may spread similarly along each axis, so σx = σy = σ .

�is results into a simplifed joint probability density function:

pd f (x ,y) = 1

2πσ 2
· e−

(x−µx )2+(y−µy )2

2σ 2
(1)

�e resulting distribution is the well-known “bell-shaped” sur-

face illustrated in Fig. 1a, signifying that density diminishes rapidly

at increasing distances from its origin (mean µ). From an application

point of view, µ should never coincide with the exact geographical

location of any object (e.g., to protect privacy in geosocial networks).

As depicted in the sca�erplot in Fig. 1b for the standard distribution
N(0, 1) having its mean at µ = (0, 0) and standard deviation σ = 1,

a circle of radius d = 3σ around the mean always contains almost

99.73% of the cumulative probability distribution (cdf). In practice,

the probability that o can be found outside this circle is negligible.

De�nition 2.1 (Bivariate Gaussian Object). An uncertain object

o(µ,σ ) ∈ O is modeled by a Bivariate Gaussian pdf with mean µ =
(µx , µy ) and standard deviation σ in each dimension. Its truncated
uncertainty region ro is derived by a circle of radius 3σ around µ
and asymptotically contains all its cdf (by almost 99.73%).

How locations get cloaked is orthogonal to kNN search and ac-

tually depends on the application; e.g., a location anonymizer may

be used as in [14] to protect user privacy or Gaussian noise models

may be employed in environmental monitoring. We only prescribe

that each moving object o must relay its current (µ, σ ), both ex-

pressed in distance units (e.g., meters). Larger σ values indicate that

an object’s actual location can be hidden in a greater area around its

mean µ. As object o is on the move, it relays updates, so the server

must accept a stream of tuples 〈o, µ,σ ,τ 〉 from uncertain objects in

O , always ordered by their timestamp values τ .

An object can dynamically adjust its degree of uncertainty, by

se�ing its σ to a value taken from a set of n �xed uncertainty levels
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Σ = {σ0,σ1, . . . ,σn−1}. In e�ect, σ controls the spread of the distri-

bution: with larger σ values, the spread is wider, also lowering the

peak of the bell (Fig. 1a). Instead, with smaller σ values, the spread

is more constrained (i.e., the bell becomes narrower, but taller).

Note that objects may report their updates in a non-synchronized

fashion, e.g., upon signi�cant changes in their whereabouts that

invalidate their uncertainty region currently known to the server.

Hence, at a given timestamp value τ , the server may refresh the

truncated uncertainty regions for a varying number of objects in O .

�e server is never aware of the exact (x ,y) coordinates of a given

object o, but it can be certain by 99.73% that o is somewhere within

its truncated uncertainty region ro until further notice.

2.2 kNN Search over Bivariate Gaussians
In the server, a varying number M of continuous nearest neighbor

queries may be registered at any given time τ . Each such query

speci�es its own (integer) number k of objects to be sought as

currently closest to its actual focal point q. Note that the position

of focal point q is always de�ned by its exact coordinates (qx ,qy ).

�ery evaluation takes place periodically at execution cycles.
Without loss of generality, each cycle starts at successive timestamp

values τ , once the corresponding batch of updates from objects and

queries have been received by the server. Since the speci�cations

of both objects and queries may change at each execution cycle,

the validity of previously emi�ed results is generally not preserved,

so computation on the server must be repeated from scratch.

Suppose a queryq that continuously searches for itskNNs among

objects in O , as illustrated in Fig. 2. Also assume that there exists a

measure P(q,o), which for any given object o ∈ O returns its likeli-

hood of being one of the kNNs to q. Objects may specify di�ering

σ ∈ Σ, hence their uncertainty regions will be varying in size (as

depicted with the magnitude of the circles), and also of varying den-

sity spead around their mean (note the degraded shading in each

circle). For each such query q over the current se�ing of objects in

O , a subset of k objects is returned as 1
st , 2nd , ...,kth NN ranked

by descending probability P(q,oi ), i = 1, 2, . . . ,k . Formally:

De�nition 2.2 (kNN�ery Over Gaussians). Let a kNN query at

focal point q against a set O of Bivariate Gaussian objects. Given

P(q,o) as a measure of in�uence ∀o ∈ O on q, the result set Q =
kNN (q,O,τ ) of qualifying objects at timestamp τ is:

(Q ⊆ O) ∧ (|Q | = k) ∧ (∀a ∈ Q,∀o ∈ O \Q, P(q,a) > P(q,o)). (2)

But one tough issue remains: how to quantify probability P(q,o)
of object o qualifying for query q? One possibility is Mahalanobis
distance, used in statistics to measure the distance of point q from

a distribution [3]. In our se�ing, this can be de�ned as follows:

De�nition 2.3 (Mahalanobis Distance). �e Mahalanobis distance

of a Bivariate Gaussian o(µ,σ ) ∈ O from focal point q is

Mahalanobis(q,o) =

√√
(qx − µx )2

σ 2

x
+
(qy − µy )2

σ 2

y
. (3)

But given that uncertainty is modeled with mean µ = (µx , µy )
and standard deviation σ = σx = σy , Eq. (3) can be simpli�ed to:

Mahalanobis(q,o) =

√
(qx − µx )2 + (qy − µy )2

σ
=

L2(q, µ)
σ

(4)

(a) Mahalanobis distances (b) Maximal distances

Figure 2: Distance measures of Gaussians from focal point q

where L2 denotes the Euclidean distance of q from mean µ of the

distribution. Naturally, this value re�ects the likelihood of o to be

among the kNNs in terms of the proximity of its mean to q and

inversely to its uncertainty level. Figure 2a depicts Mahalanobis

distances of various Bivariate Gaussian objects from a focal point

q computed according to Eq. (4). It can be easily observed that

Mahalanobis distance favors objects close enough to q, but which

are more spread, i.e., with higher variance and thus a greater degree

of uncertainty. Note that objects o1 and o2 have their means at equal

Euclidean distance from q, but o2 has almost half the Mahalanobis

distance compared to o1. In that sense, it is like q being assigned as

a “sample” to an uncertain object (viewed as a “cluster”).

Yet, we can take a di�erent approach. If we draw circles at in-

creasing radii d that respectively enclose the truncated uncertainty

regions of objects (Fig. 2b), we can easily infer that o1 overall has a

higher in�uence with respect to the rest, and thus may be ranked

as the 1
st

NN. In practice, such radii correspond to the maximal
in�uence of every truncated uncertainty region from q. We de�ne:

De�nition 2.4 (Maximal Distance). For a Bivariate Gaussian ob-

ject o(µ,σ ) ∈ O , the maximal distance of its truncated uncertainty

region ro from focal point q is

MAXDIST (q,o) = L2(q, µ) + 3σ . (5)

Intuitively, this value quanti�es the greatest possible Euclidean

distance of any location within region ro from q, as depicted with

the straight lines in Fig. 2b. Based on such MAXDIST values, the

less uncertain (i.e., a more restricted region ro ) and closer to q an

object is, the more probable to be amongst its kNNs. Under this

interpretation, Mahalanobis in Eq. (4) would not be an adequate

measure. Indeed, in our case, the problem is neither to assign focal

point q to its closest cluster nor to classify it. Instead, it is the other

way round; we wish to identify which k objects are more likely

to be relevant to q, so MAXDIST seems preferrable. Still, such

distances actually represent the maximal in�uence of respective

objects and practically take into account all their uncertainty.

Interestingly, if all Bivariate Gaussian objects inO have identical

σ values, then standard kNN monitoring techniques like [15, 21,

22] can be employed by only considering Euclidean distances of

their means from q and ignoring uncertainty altogether. Either via

Mahalanobis or MAXDIST distances, it is trivial to prove this:
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Lemma 2.5. Suppose that ∀ o1(µ1,σ1), o2(µ2,σ2) ∈ O , o1 , o2, it
holds that σ1 = σ2 = σ . If L2(q, µ1) < L2(q, µ2), then o1 dominates

o2 and it is closer to focal point q.

Unfortunately, for objects of varying uncertainty level (as most

o�en occurs in our se�ing), no standard kNN methods can be

applied as they only consider exact point locations.

3 SPECIFICATIONS FOR CONTINUOUS
PROBABILISTIC kNN SEARCH

As we opt for obtaining approximate results inkNN monitoring over

moving Bivariate Gaussians, we should probabilistically quantify

their in�uence with respect to a known focal point q. �e problem

is that Gaussian distributions cannot be integrated analytically, so

we would need to resort to costly numerical methods like Monte-

Carlo simulations [19] to get a fair estimation of the kNN results.

In this Section, we �rst investigate two such baseline approaches,

showcasing their inherent �aws. Towards a more generic and

con�gurable speci�cation, we then introduce kθNN queries, i.e.,

continuous probabilistic kNN search with a cuto� threshold θ .

3.1 kNNs by Estimating Circular Coverages
A naı̈ve solution to identify kNNs probabilistically may involve

iterative searching at gradually increasing distances around focal

point q. What we need to examine is probability Pc (q,d, ro ) for a

candidate object o to be contained within a circleC(q,d) of varying

radius d , but always centered at q. As illustrated in Fig. 3a, this is

equivalent to slicing the truncated uncertainty region ro by circleC
and assessing the portion of the distribution (cdf) within C . In fact,

this is the result of the circular coverage function, as it is known in

statistics [9]. In our se�ing, this is expressed as follows:

De�nition 3.1 (Circular Coverage Probability). For a Bivariate

Gaussian object o(µ,σ ) ∈ O , its circular coverage probability at a

given distance d from focal point q(qx ,qy ) is

Pc (q,d, ro ) = Pc (q,d, µ,σ ) =

=
1

2πσ 2

∫ qx+d

qx−d

∫ qy+
√
d2−(x−qx )2

qy−
√
d2−(x−qx )2

e
− (x−µx )

2+(y−µy )2

2σ 2 dydx . (6)

So, a baseline algorithm would start examination at a very small

radius d = d0 (even with d = 0), and would estimate with a Monte-

Carlo simulation the cumulative probability of each object o ∈ O
according to Eq. (6). �is algorithm would progressively increase

search radius d by a small (ideally in�nitesimal) amount dr and

repeat calculations until k objects are found and all have their

truncated uncertainty regions within this circle by more than 99.73%

circular coverage probability, i.e., with negligible error. Ranking of

kNNs may be based on their estimated coverage probabilities.

�e major problem with this naı̈ve approach is that Monte-Carlo

simulation generally incurs excessive CPU cost as it requires a

su�ciently large number (at the order of 10
6

[19]) of samples per

object. Even worse, such simulations must be performed repeatedly

at multiple increasing radii for Eq. (6) and generally may concern

many candidate objects per query. Given the mobility of objects

and the mutability of queries over time, such a solution is u�erly

prohibitive for processing multiple kNN requests in online fashion

over a large number of moving Gaussian objects.

3.2 kNN Search by Maximal Distance
�e aforementioned technique could be substantially improved if all

objects were represented by their truncated uncertainty regions, i.e.,

like circles as in Fig. 1b. �e initial search radius d0 should be the

smallest MAXDIST among uncertainty regions from q. For a given

q, this variant must calculate MAXDIST values for all candidates

according to Eq. (5) and incrementally search only at those selected

radii in ascending order. �e method terminates a�er checking

objects against circles for exactly k successive MAXDIST radii.

�e crux of this incremental radial search method is that costly

Monte-Carlo simulation is no longer necessary. Indeed, the �rst ra-

dius d1 = MAXDIST (q,o1) covers the truncated uncertainty region

of one object (ties between such distance values may be resolved

arbitrarily). As illustrated in Fig. 2b, object o1 has more than 99.73%

chance to be within the inner circle of radius d1, hence it imme-

diately quali�es as 1
st

NN. �en, searching expands, designating

o2 as 2
nd

NN, o4 as 3
rd

NN, and so on. By construction, di is the

ith MAXDIST value in ascending order, and it designates a circu-

lar area around q that covers the truncated uncertainty region of

one more object with respect to di > di−1, i = 2, . . .k . Of course,

this method requires many distance computations per query q and

sorting them in ascending order. Taking the kNN results is trivial:

Lemma 3.2. �e order of MAXDIST values from focal point q
coincides with the ranking of the respective objects as kNNs to q.

Yet, there is a subtle assumption behind this method. It con-

siders that a given candidate object o may be one of the kNNs by

examining practically all its uncertainty region ro , i.e., based on its

maximal in�uence. In e�ect, no probabilty estimations are involved

in computing those MAXDIST values. From another point of view,

the returned results may be sometimes considered unfair. Indeed,

in the se�ing of Fig. 2b, the uncertainty region of object o3 almost

touches focal point q and its mean (centroid) is the third closest

to q, much closer than the mean of objects o4 and o5. Still, o3 does

not qualify among the k = 4 NNs according to this incremental

radial search. In contrast, results would di�er if we considered only

portions of uncertainty regions (Fig. 3a), e.g., that an object has at

least θ = 75% probability to be one of the kNNs. In that case, object

o3 would be ranked higher than o4 and o5, and thus qualify as the

3
rd

NN. Intuitively, such an approach would pick objects that are

not only close to the query point, but they are less uncertain than

others and also qualify as kNNs with probability above a given

threshold θ . According to this rationale, we next introduce con-

tinuous probabilistic kNN queries that employ a threshold when

choosing objects as nearest neighbors and exclude from further

consideration any candidates with insu�cient probability.

3.3 kNN Search by Cuto� Distance
In the sequel, we assume that every kNN query also prescribes a

real-valued threshold θ , with 0.5 6 θ < 1, essentially expressing

the lowest tolerable probability of an object to be ranked among

the kNNs to focal point q. We dictate that θ can be no less than

50%, so that it is more probable than not for each qualifying object

to be one of the kNNs to a given query.

In this paper, such requests are called continuous probabilistic
k-nearest neighbor queries (kθNN), and return k objects as results.
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(a) Cuto� distances at θ=0.75 (b) Search in successive frames of grid G

Figure 3: ProbabilistickθNN search over Bivariate Gaussians

During the lifetime of a kθNN query, its focal point q may be

moving and its threshold θ may arbitrarily change. �us, along

with streaming updates from moving Gaussian objects, the server

should also accept updated query speci�cations as 〈q,k,θ ,τ 〉. At

each execution cycle τ , the server must issue the k most probable

NN results for each kθNN query, and at descending probability

above its threshold θ . Before giving a formal de�nition of such

queries, we introduce the following notion:

De�nition 3.3 (Cuto� Distance). For a Bivariate Gaussian object

o(µ,σ ) ∈ O of truncated uncertainty region ro , its cuto� distance dθo
from focal point q w.r.t. a known threshold θ is the smallest radius

of a circle C(q,dθo ) at which object o obtains a circular coverage
probability Pc (q,dθo , ro ) > θ .

Let object a be the ith NN to q for a given θ . Its cuto� distance

indicates the Euclidean distance from q at which object a a�ains

enough probability (> θ ) to be among the kθNNs. So, picking ob-

jects with the top-k cuto� distances from q can provide a ranking

amongst qualifying kθNNs. Figure 3a depicts the four circles and

the corresponding cuto� distances based on circular coverage prob-

abilities at θ = 0.75 for objects o1,o2,o3,o4. Assuming that such a

cuto� distance dθi is known for every ith NN, i = 1, . . .k , we know

from Eq. (6) that all kθNN objects are covered by a probability at

least θ within the largest such radius dθk = max{dθi }, which obvi-

ously corresponds to the kth NN. For instance, object o4 determines

the largest cuto� distance dθ
4

amongst kθNNs; so, the outer circle

in Fig. 3a covers all k = 4 θNNs by at least θ = 0.75. Formally:

De�nition 3.4 (kθNN �ery over Gaussians). Let a query at focal

point q with threshold θ for selecting its k-nearest neighbors from

a set O of Bivariate Gaussian objects at timestamp τ . If the kth

smallest cuto� distance dθk from q amongst objects in O is known,

result set Q = kθNN (q,O,τ ) of qualifying objects is:

(Q ⊆ O) ∧ (|Q | = k) ∧ (∀a ∈ Q, Pc (q,dθk , ra ) > θ ) ∧

∧ (∀a ∈ Q,∀o ∈ O \Q, Pc (q,dθk , ra ) > Pc (q,dθk , ro )) (7)

Ties in the ranking of kθNN results may be resolved arbitrarily.

In case of multiple objects equally qualifying as the kth NN, i.e.,

all having exactly the same circular coverage probability, then one

may be randomly chosen for inclusion in responseQ . Alternatively,

such equivalent objects may be all appended to answer Q as kth

NNs, relaxing the requirement that |Q | = k in rule (7).

As the example in Fig. 3a illustrates, cuto� distance dθk is a more

aggressive measure, o�ering tighter circular coverages for any given

θ , in contrast to the conservative MAXDIST values (Fig. 2b). It can

be easily veri�ed that with θ = 99.73%, kθNN results obtained from

(7) are identical to kNNs issued by the incremental radial search that

examines the entirety of truncated uncertainty regions (Section 3.2).

Overall, the rules in (7) provide a generic query speci�cation dy-

namically con�gurable by a user-de�ned θ . Unfortunately, it is hard

to estimate cuto� distances for arbitrary thresholds and uncertainty

characteristics. According to (7), the server may need to estimate

circular coverage probabilities against potentially many objects in

order to provide a valid response and each such estimation requires

another costly Monte-Carlo simulation.

4 APPROXIMATION STRATEGY
As numerical estimation of kθNNs is not a�ordable in real time,

next we propose a relaxed speci�cation and a method that yields

approximate results by eagerly pruning non-qualifying objects.

4.1 Discretized Veri�ers over Gaussians
To overcome the burden of estimating cuto� distances, we propose

a discretization scheme for uncertainty regions that can assist in

quick veri�cation of their probability to qualify as kθNNs. In par-

ticular, we create one discretized veri�er Vσ for each uncertainty

level σ ∈ Σ; this yields n veri�ers in total. As illustrated in Fig. 4,

we specify the elementary box ε of eachVσ as a square of �xed side

δ units, such that 3σ = ν · δ , ν ∈ N∗. �e �rst such box ε0 of any

Vσ is placed with its center coinciding with the mean location µ of

the respective Gaussian pdf. �en, we arrange a set of 8 extra ele-

mentary boxes like a square-shaped frame around ε0. �is process

continues recursively enclosing the previous frames, as depicted

with the thick squares in Fig. 4. It can be easily observed that the ith

successive frame around central box ε0 appends 8i extra elementary

boxes covering more of the uncertainty region.

Discretization is over once we get all the boxes required to cover

the truncated uncertainty region ro . Only them contain meaningful

probabilities (the portion of cdf within each box); we can dispense

with the rest as they a�ain negligible probability (Fig. 4). We rep-

resent each Vσ as a square matrix of λ × λ items (i.e., cdf values)

corresponding to equi-sized boxes symmetrically around the mean.

�e total area (actually a square shown in red in Fig. 4) covered

by λ × λ elementary boxes fully contains the respective truncated

uncertainty region ro . �us, the total cumulative probability in

each veri�er is greater than 99.73%, exceeding the cdf contained in

that ro , and it is asymptotically tending to 100%. Of course, due to

the di�ering magnitude of each distinct σ ∈ Σ, a diverse number of

boxes are included in its respective veri�er Vσ . Formally:

De�nition 4.1 (Discretized Veri�er). Given an elementary box

of side length δ , veri�er Vσ for uncertainty level σ ∈ Σ is a

matrix of λ × λ such boxes arranged symmetrically around the

mean of the respective pdf. By construction, we pick δ such that

3σ = ν · δ , ν ∈ N∗, so granularity of Vσ is λ = d 6σδ e + 1. Weight
Vσ (ε) is the fraction of the cdf contained within a box ε ∈ Vσ .
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(a) λ = 7 for a given σ ∈ Σ (b) λ′ = 11 for σ ′ ∈ Σ, σ ′ = 1.66σ

Figure 4: Veri�ers of �xed box side length δ for any σ ∈ Σ

We enumerate boxes with a pair of (positive or negative) integers

(i, j) by their row and column in the matrix. Since λ is always an

odd integer due to the symmetry of frames, central box ε0 is always

at position (0, 0) in every matrix Vσ . Although the spatial area

of any box ε is always δ2
, its weight Vσ (ε) is not, because each

box contains a varying portion of the cdf w.r.t. to its placement in

the uncertainty region. A box near the mean contains much more

probability than a more distant box, hence it weighs more in the

veri�er, as shown in Fig. 6 for λ = 7. Since each uncertainty level

σ ∈ Σ is known in advance, the probability contained in the boxes

of its respective veri�erVσ can be estimated in a preprocessing step

using Monte-Carlo simulation and then stored in a lookup matrix.

As each elementary box has �xed resolution δ in all veri�ers no

ma�er their uncertainty level, it can be trivially proven that:

Lemma 4.2. Let V a veri�er of granularity λ pertinent to uncer-
tainty level σ . �en, veri�er V ′ at level σ ′ =m · σ ,m > 1,m ∈ R
has granularity dm · (λ−1)e+1 with equal box side length δ . For their
weigths at any elementary box (i, j), it holds that V ′(i, j) 6 V (i, j).

For instance, the uncertainty region of object o′ in Fig. 4b has

σ ′ = 1.66σ compared to object o in Fig. 4a. So, if veri�er V for o
has granularity λ = 7, then veri�er V ′ for o′ will have granularity

λ′ = d1.66 · (7 − 1)e + 1 = 11 in either dimension.

�is notion of probabilistic discretization di�ers from the one

introduced in [16] for range monitoring over Gaussians. In that

case, all veri�ers circumscribed the truncated uncertainty regions

and had a �xed granularity λ irrespective of the distribution density;

so the weight in any position in the matrix was the same across

veri�ers for any σ values. As illustrated in Fig. 4, now λ varies

in proportion to each σ (by de�nition); hence, boxes in diverse

veri�ers at the same distance from their central box ε0 contain

di�erent probabilities in order to suitably distinguish candidate

kθNN s with a brand new traversal strategy, as detailed next.

4.2 Symmetrical Frame Traversal of Veri�ers
In order to probabilistically quantify proximity of a given object

o(µ,σ ) ∈ O to focal point q, what ma�ers is not the absolute coordi-

nates of its actual mean µ, but only (i) its distance L2(q, µ) relative

to q and (ii) its uncertainty level σ , as illustrated in Fig. 3a. �anks

to the symmetry in any Bivariate Gaussian pdf with σx = σy = σ
around its mean, we can apply the following transformation: for a

Figure 5: Symmetrical frame-based traversal of a veri�er

candidate object o(µ,σ ), its veri�er Vσ is symmetrically placed at

distance L2(q, µ) over a horizontal axis originating from q. �en,

we can approximately compare candidates on the basis of their

veri�ers across this single veri�cation axis (the horizontal do�ed

line in Fig. 5). By probing veri�er Vσ for a candidate o, we want to

approximately estimate the probability contained in a subset S of

its elementary boxes that su�ces to exceed θ . More concretely:

De�nition 4.3 (Box Coverage Probability). For a Bivariate Gauss-

ian o(µ,σ ) ∈ O , its estimated box coverage probability P̂b (q,d,Vσ )
is the sum of weights from the least number ξ of elementary boxes

in its veri�er Vσ such that P̂b (q,d,Vσ ) > θ , once Vσ is centered at

distance d = L2(q, µ) from focal point q along the veri�cation axis.

In identifying which elementary boxes to visit in Vσ , we should

naturally start probing from box εq that contains focal point q. So:

(i) if d = L2(q, µ) < 3σ + δ
2

, then q falls inside some box εq of

veri�er Vσ , thus q is internal to Vσ (Fig. 7);

(ii) if d = L2(q, µ) > 3σ + δ
2

, then q does not fall within any

elementary box of veri�er Vσ , so q is external to Vσ (Fig. 5).

In either case, probing veri�er Vσ should provide a collection

S of elementary boxes, organized as a series of successive frames
outwards from box εq , such that their cumulative probability is

P̂b (q,d, S) > θ . Note that q may not necessarily be at the center

of box εq , yet always along the veri�cation axis; as we opt for an

approximate computation via discretization, the exact position of q
in a box is ignored. As shown in Fig. 5, the respective box εq alone

constitutes the �rst frame ρ0 to probe in veri�er Vσ , and initializes

the estimated box coverage probability to P̂b = Vσ (εq ).
Each successive frame ρi outwards around εq in veri�erVσ accu-

mulates more boxes in S , as depicted with the blue square-shaped

strips in Fig. 5. When a box ε is visited, its weightVσ (ε) is added to

box coverage probability P̂b . Visiting boxes progressively across

each next frame ρi continues until we a�ain P̂b > θ . Intuitively,

picking boxes by rotating in spiroidal fashion over successive frames

aims to provide a fair estimation of probability, as a discretized ana-

logue of cuto� distance in circular coverage probabilities.

Instead of probing a given frame ρi (in a clockwise or counter-

clockwise fashion) starting from an arbitrary box, we propose a

symmetrical frame-based traversal of boxes above and below the

veri�cation axis, which can yield more comparable estimates.
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Figure 6: Weights in a veri�er
of 7 × 7 elementary boxes

(a) L2(q, µ) = 1.75δ , λ=7, ξ =26 (b) L2(q, µ) = 1.75δ , λ = 11, ξ = 28 (c) L2(q, µ) = 0.75δ , λ = 11, ξ = 16

Figure 7: Probing veri�ers by θ = 0.8 for several placements of q and diverse uncertainty levels

More speci�cally, at a given frame ρi we �rst probe its box closest

to µ across the veri�cation axis (marked 0 in Fig. 5), and we append

it to S . �is bias on boxes towards the mean of the distribution

intends to eagerly a�ain probability θ as early as possible. Next, we

continue by alternating selection of boxes from above and below

the veri�cation axis. Boxes of ρi above the axis are traversed in

a counterclockwise fashion, while those below the axis are visited

clockwise, as shown by the numberings and arrows in Fig. 5. �is

o�ers the advantage that we �rst pick boxes with greater probability,

and hence achieve more fairness in comparing objects.

It may occur that frame ρi exceeds veri�er Vσ , like ρ3 in Fig. 7a

or it is even completely outside of Vσ as several frames in Fig. 5.

�anks to the symmetry in the discretization scheme, we can skip

traversal of such boxes, although they will be added as virtual boxes

in collection S , since they contain negligible probability.

For sparing frame traversals when q is external toVσ , we exploit

the fact that always θ > 0.5. In a preprocessing step, we compute

the total probability p contained in all columns of Vσ on the le� of

its central box ε0, and we lookup this p < 50%. At runtime, if q is

external to Vσ , we initialize P̂b = p and directly start probing Vσ
from its frame ρi that includes its central elementary box ε0.

Each time a box ε is added to collection S , we check whether

accumulated probability P̂b > θ . If not, there is room for more

boxes to add in S , and we continue with the next box in that frame

or with the successive frame outwards from the starting box εq .

Once threshold θ is exceeded, we stop picking any more boxes and

their count ξ is �nalized. Note that only a subset of boxes in the

last traversed frame ρi may need be probed, since condition P̂b > θ
may become true before exhausting all boxes in ρi , as illustrated

with the blue-shaded boxes in Fig. 7. Clearly, traversal is biased

towards boxes of higher density, which naturally outweigh others

more distant from µ. �e distance from focal point q of the extreme

side of box εb ∈ S that is the remotest along the veri�cation axis

w.r.t. q is called extreme box distance dbo for candidate object o.

At the end of such a traversal, the box count of collection S is

ξ = min({|S | : θ 6
∑
ε ∈S

Vσ (ε)}), (8)

and expresses the least number of elementary boxes from veri�erVσ
required to a�ain a box coverage probability P̂b > θ . �is approach

is based on the reasonable assumption that we prescribe a limited

number n of discrete uncertainty levels Σ = {σ0,σ1, . . . ,σn−1} for

all objects, hence we can precompute their veri�ers.

Given that all boxes are equi-sized but have varying weights ac-

cording to uncertainty levels, the less the box count ξ corresponding

to threshold θ for a given candidate, the less uncertain and closer

to q this candidate can be. Indeed, a low count ξ1 indicates that

candidate o1 is more dense (Fig. 7a), since it can get P̂b > θ a�er

probing less frames as opposed to another candidate o2 with ξ2 > ξ1

boxes (Fig. 7b). In addition, the fact that ξ1 < ξ2 could also imply

that the mean of a given o1 is nearer to q (Fig. 7c) compared to o2

(Fig. 7b). In such cases, we say that object o1 dominates object o2

as a kθNN candidate to query q. Hence, box counts are used as a

rough measure for comparing candidate kθNNs.

4.3 Bounds on Least Box Counts
Suppose that object o(µ,σ ) should be probed for a kθNN query

with a given threshold θ . Depending on the location of focal point

q along the veri�cation axis, traversal of its respective veri�er Vσ
provides a di�erent count ξ of elementary boxes that collectively

gain a probability P̂b > θ . Let box εq ∈ Vσ be the one containing q.

�e idea is that we can establish bounds on box counts ξ for several

possible placements of εq w.r.t. to mean µ. Indeed, for a given

combination of threshold θ and uncertainty σ , we can precompute

bounds iterating over possible placements of ε at discretized distance
ranges along the middle row of its pertinent veri�er Vσ as follows:

• 0 6 L2(q, µ) < δ
2

. Initially, q is in the central box ε0 of

veri�er Vσ . Starting a traversal of Vσ from ε0 until we

reach P̂b > θ establishes the least required box count ξ0.

• (2i−1)δ
2

6 L2(q, µ) < (2i+1)δ
2

. At iteration i > 0, q is

assumed to be i boxes to the le� of ε0 across the veri�cation

axis. So, traversing Vσ from box εi towards a probability

at least θ gives the respective box count ξi .
• L2(q, µ) > dU . �e last iteration occurs once the current

box count ξU fromVσ (with virtual boxes ignored) is stabi-

lized w.r.t. to the previous iteration. dU is the upper bound

in the distance from q; if an object has its mean µ farther

than dU from q, it can never get a box count ξ < ξU .

As a result, given a thresholdθ and uncertainty levelσ , we can ob-

tain a list with box counts ξ , each corresponding to a distance range
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d−− discretized by odd multiples of
δ
2

. In a preprocessing step, we

can repeat this process against all uncertainty levels σ ∈ Σ and for

a small set of indicative threshold values Θ = {θB : 0.5 6 θB < 1}
typical in many requests. �is yields a lookup table of upper bounds
B = {〈σ ,θB ,d−−, ξ 〉} at typical values θB ∈ Θ and discretized dis-

tances d−− for every σ ∈ Σ. In particular, for a speci�c pair of

uncertainty level σ and threshold θB , when the discretized distance

of a given object from q falls in a certain range d−−, then we lookup

in B to get the least count ξB of elementary boxes required to cover

probability at least θB . �is guarantees that, at this distance range,

we would never get more than ξ boxes in order to get su�cient

probability for a candidate kθNN. As will be discussed next, at run-

time we make use of lookup B in order to quickly prune candidates

without traversing their veri�ers.

4.4 Approximate Validation of Candidates
Our key intuition behind the use of discretized veri�ers is that

they can provide an approximate, yet computationally a�ordable

means of probabilistically quantifying the proximity of candidate

objects to a given query point. Admi�edly, given the arbitrary

placements of objects and their diverse uncertainty levels, there

may occur situations when veri�ers may falsely include an invalid

(false positive) or discard a valid answer (false negative).

In order to employ veri�ers in query evaluation, we relax the

kθNN speci�cation in Section 3.3 to issue approximate results:

De�nition 4.4 (Approximate kθNNs over Gaussians). Let a query

at focal point q that speci�es a threshold θ for selecting its k-nearest

neighbors from a set O of Bivariate Gaussian objects at timestamp

τ . �en, a result set Q = kθNN (q,O,τ ) of qualifying objects can

be approximately computed as:

(Q ⊆ O) ∧ (|Q | = k) ∧ (∀a ∈ Q, P̂b (q,dba ,Vσa ) > θ ) ∧
∧ (∀a ∈ Q,∀o ∈ O \Q, ξa 6 ξo ) (9)

where dba is the extreme box distance of object a ∈ O from q, and

ξa is the box count a�er probing its corresponding veri�er Vσa .

Again, ties amongst qualifying objects of equal box counts may

be resolved arbitrarily. Following this speci�cation, the core idea of

our evaluation strategy at each timestamp τ is to check candidates

and keep only those k of them with the least box counts ξ . Two

lists track objects relevant to a given query qi with threshold θ :

• List Qi maintains up to k currently qualifying kθNN objects

sorted by their ξ counts. Once no more objects need be checked

for qi , items in Qi are emi�ed as results at time τ .

• List Ai holds up to n objects designated as guards, one guard

per uncertainty level σ ∈ Σ. For a given σ , guard oσ ∈ Ai
can be (i) either the object in Qi having the maximal box count

ξmax amongst items in Qi with the same uncertainty σ , or (ii)

if no object of uncertainty σ belongs to Qi , then guard oσ is a

past candidate that so far has obtained the minimal box count

ξmin for uncertainty level σ . In this la�er case, guard oσ < Qi .

Intuitively, guard oσ is the �rst object that should be replaced

in Ai (and in Qi , if it also quali�es as a kθNN), once a be�er

candidate of similar σ is met.

�us, while a given query qi is being evaluated, less than k + n
objects need be maintained to safeguard its �nal results.

Algorithm 1: kθNN Monitoring (timestamp τ )

1 Input: Speci�cations 〈qi , ki , θi , τ 〉, i ∈ {1, ..., M } of kθNN queries

2 Input: Updates 〈oj , µ j , σj , τ 〉, j ∈ {1, ..., N } of Gaussian objects

3 Preprocessing: Veri�ers {Vσ , ∀ σ ∈ Σ} of elementary box side δ
4 Preprocessing: Lookup table of bounds B = { 〈σ , θB, d−−, ξ 〉 }
5 State: Grid partitioning G of 2-D Euclidean plane in д × д cells

6 Output:
⋃
i { 〈qi , Qi 〉: set Qi of kθNN objects per query i = 1...M}

7 for each object oj updated at timestamp τ do
8 c′ ← cell where oj was indexed until now;

9 c ←hash(G, µ j ) ; // Cell where oj has currently its mean µ j
10 if c , c′ then
11 c′.ob jList ← c′.ob jList \ {oj };
12 c .ob jList ← c .ob jList ∪ {oj };

13 for each focal query point qi do
14 Qi ← ∅; Ai ← ∅ ; // Initialize lists of objects

15 ci ←hash(G, qi ) ; // Cell where focal point is now located

16 cList ← {ci } ; // List of cells to search w.r.t. qi
17 ρ ← 0 ; // Initial frame is the cell containing qi
18 dbk ← 8 ; // No qualifying objects yet; distance undefined

19 repeat
20 for each cell c ∈ cList do
21 CheckObjectsInCell(c, qi , ki , θi , Qi , Ai );
22 if Qi , ∅ then
23 dbk ← max{dbj , oj ∈ Qi } ; // Extreme box distance

24 ρ + + ; // Next frame in grid G around focal point qi
25 cList ← FetchCells(G, ρ, qi , dbk ) ; // Cells at next frame

26 stop ← (|Qi | > k ) ; // Are there enough candidates?

27 for each cell c ∈ cList do
28 stop ← stop ∧ (dbk ≤ MINDIST (qi , c));

29 until cList = ∅ or stop ;

30 Report 〈qi , Qi 〉 with kθNN objects in Qi sorted by ξ counts

Algorithm 1 summarizes the monitoring process per timestamp

τ . Typically for kNN monitoring [15, 21, 22], we apply a grid par-
titioning G that subdivides the entire monitored area into д × д
equi-sized cells. We stress that grid cells are used for spatially in-

dexing the mean locations of Gaussian objects; they should not be

confused with elementary boxes in veri�ers that discretize the cdf

of objects at various uncertainty levels. Once fresh object updates

are received at time τ , grid G gets updated in order to list which

mean locations are contained in each cell c ∈ G (Lines 7-12).

Each query is evaluated separately against the current uncer-

tainty characteristics of objects. For each focal point qi , we start

examining objects with mean locations in grid cell ci where qi is

found, and we continue with cells in successive frames outwards

from ci (Fig. 3b). �is policy for cell-based inspection of potentially

qualifying objects is similar to the one introduced in [15] for kNN

monitoring over exact point locations. But, in our case we search

for uncertain objects; even if such an object has not its mean in a cell

ci , its uncertainty region may overlap with ci . As uncertainty levels

vary among objects, we may need to check cells in extra frames

outwards from ci . So, in a priority queue cList , we keep grid cells

pending for inspection. Objects in each such cell will be checked

as detailed in Section 4.5. Initially (Lines 14-18), cList includes only
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cell ci where qi is now located; this is the initial frame (ρ0) in the

grid as shown in Fig. 3b. At each successive frame ρ outwards from

qi , a cell c from ρ is added to priority queue cList only if potential

candidate objects are indexed in c , determined according to the

following pruning rule:

Lemma 4.5. Let grid cell c ∈ G be the next one to visit at frame ρ
outwards from focal point q. Given that θ > 0.5, no object indexed in
c can be a kθNN to q ifMINDIST (q, c) > dbk , where d

b
k is the most

extreme box distance amongst currently qualifying objects in Q .

Proof. Most extreme box distance dbk depends on the last (kth )

object in Q (Lines 22-23), since items in Q are sorted by their box

counts; the more the elementary boxes required for a candidate

to reach θ , the larger its extreme box distance from q. Now, let

an object o(µ,σ ) indexed in cell c . Clearly, its mean µ cannot get

any closer to q but at distance L2(q, µ) = MINDIST (q, c), where

MINDIST is the Euclidean distance from q to the closest point in

the perimeter of rectangle c , exactly as in [17]. �en, the circular

coverage probability of object o at distance dbk 6 MINDIST (q, c)
is always Pc (q,dbk , µ,σ ) 6 0.5 6 θ , whatever its uncertainty level

σ . According to (7), there is no chance that o could replace any

existing object in Q ; the same holds for any other object o′(µ ′,σ ′)
also indexed in cell c , because L2(q, µ ′) > MINDIST (q, c). �

�is rule is important because we can skip grid cells in a frame,

but also because it provides a termination condition for the algo-

rithm. Indeed, evaluation for query qi must stop as soon as k
qualifying objects have been collected in Qi a�er visiting a number

of grid frames and examining more frames outwards from q cannot

alter Qi . So, if we reach a frame ρ in grid G and Lemma 4.5 holds

for all its cells, then no object indexed in or beyond this frame can

qualify as an answer to q (Lines 26-28). Of course, once cList is

exhausted, evaluation for qi terminates (Line 29). Finally, the k
objects contained in list Qi are returned as the approximate kθNN

results ranked in ascending order by their box counts ξ (Line 30).

4.5 Checking Objects Indexed in a Grid Cell
If a grid cell c cannot be skipped, then each object o(µ,σ ) having

its mean µ indexed in c should be checked (Algorithm 2). To avoid

costly traversal of its respective veri�er Vσ in cases that o cannot

possibly qualify, we develop two pruning rules. In particular:

Pruning with Guards. For the uncertainty level σ of candidate o,

we can promptly identify its respective guard oσ ∈ A. If there is

one object at uncertainty level σ contained in Q ∪ A that may be

dropped, this is no other than oσ . But, according to Lemma 2.5, if

candidate o is farther from q than guard oσ , then it cannot possibly

alter either Q or A, provided that guard oσ < Q . Indeed, in case

that oσ is amongst the kθNNs inQ but at a rank < k , then candidate

o (a�er probing its veri�er) could perhaps qualify for some lower

rank in Q and evict an object of di�erent uncertainty. Otherwise, if

oσ is just a guard and (compared to o) it is closer to q, there is no

possibility that candidate o can replace it (Lines 2, 5-6).

Pruning with Bounds on Least Box Counts. We make use of

the precomputed bounds in lookup B (Section 4.3) so as to prune

candidate o without probing. Indeed, we can �nd at which discrete

Algorithm 2: CheckObjectsInCell (grid cell c , focal point q , integer

k , threshold θ , list Q of candidate objects, list A of guard objects)

1 for each object o(µ, σ ) ∈ c .ob jList do
2 oσ ←GetGuard(A, σ ) ; // for uncertainty level σ of o

3 o′ ← Q .back() ; // Least probable object in current kθNNs

4 ξB ← B(σ , θmax , d−−) at θmax = max({θB ∈ Θ : θB 6 θ }) ;

5 if ((L2(q, o .µ) > L2(q, oσ .µ)) ∧ (oσ < Q )) then
6 continue ; // o can neither be a kθNN nor a guard

7 else if (o′.ξ 6 ξB ) then
8 continue ; // Even for a lower θmax , o cannot be kθNN

9 else
10 〈P̂b, ξ 〉 ←Probe(Vσ , q, µ, θ ) ; // #boxes to attain P̂b > θ

11 if ((oσ < Q ) ∧ (oσ .ξ > ξ )) then
12 SetGuard(A, σ , o) ; // o replaces oσ at level σ

13 if (o′.ξ > ξ ) then
14 Q .insert(〈o, ξ , P̂b 〉) ; // o qualifies as kθNN

15 if ( |Q | > k ) then
16 Q .pop() ; // Evict o′ from Q, but o′ may...

17 CheckGuard(A, o′) ; // become guard if o′ .σ , σ

range d−− its distance L2(q, µ) falls in. We can also identify the

greatest typical threshold θmax = max({θB ∈ Θ : θB 6 θ }) listed

in B. So, we can readily lookup for item B(σ ,θmax ,d−−) and get the

box count ξB required to achieve probability at least θmax 6 θ
(Line 4). �anks to discretization of veri�ers, this guarantees that a

candidate of such uncertainty characteristics would never traverse

more than ξB boxes in order to qualify for kθNN. So, if o′ is the

currently qualifying kth item in Q and its box count is o′.ξ 6 ξB ,

then we can safely discard candidate o; it cannot possibly replace

existing kθNNs since it would need to traverse more elementary

boxes, even for a lower threshold θmax (Lines 7-8).

In case neither pruning condition is met, we have to probe veri�er

Vσ to retrieve a box count ξ , as well as its equivalent box coverage

probability P̂b (Line 10). �is la�er is useful, because if o eventually

quali�es amongst the kθNNs, then P̂b − θ can be reported as an

indicative error margin of its ranking. From box count ξ we can

determine whether candidate o should become a guard or even

qualify as a kθNN. Indeed, if existing guard oσ has a greater box

count, then o will replace it as the new guard in A for uncertainty

level σ (Lines 11-12). Besides, let o′ be the currently kth object

in Q having box count greater than ξ . �en, candidate o should

replace o′ and qualify itself among the kθNNs in Q . Note that

disquali�ed object o′ may still serve as guard in A, if it refers to a

diverse uncertainty level and there is no other object of equivalent

uncertainty le� inQ (Lines 13-17). Objects discarded fromQ cannot

be reinserted, even though they can still serve as guards. �is

happens because the box count of the kth item in Q diminishes

monotonically with the insertion of more items. So, if object o′

disquali�es, it cannot belong to the �nal answer at timestamp τ .

5 EMPIRICAL STUDY
In this Section, we empirically validate ourkθNN monitoring method

against frequently updated moving objects of Gaussian uncertainty.
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Figure 9: E�ect from various uncertainty levels
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Figure 10: Varying threshold θ

5.1 Experimental Setup
We generated synthetic datasets for objects and queries moving at

diverse speeds in an area of 25km×25km. We consider N = 100 000

uncertain objects, each relaying updates of its (µ,σ ) characteris-

tics regularly at every timestamp τ = 1, . . . , 200. Similarly, we

generated the initial focal points for M = 10 000 queries at τ = 0.

A�erwards, movement agility of queries is set to 0.1; so, at each

timestamp, a random 10% of focal points are chosen and they get

randomly displaced to another location. �is does not a�ect cor-

rectness of results, since we evaluate each query from scratch at

every τ (so, we next report average execution times per query

over 200 timestamps), but may occasionally increase execution cost

depending on the actual density of uncertain objects nearby.

�e algorithm was implemented in GNU C++ and all exper-

iments were conducted on an Intel(R) Xeon(R) CPU E5-2660 at

2.20 GHz CPU and 96GB RAM running Ubuntu Linux. Performance

measures are averages over all timestamps, whereas qualitative

results are reported indicatively at τ = 100. Table 2 lists the param-

eters and their range of values tested in the experiments; default

values used in most simulations are shown in bold. Unless other-

wise speci�ed, at each timestamp any object can change randomly

its level of uncertainty to a value from Σ.

5.2 Performance Results
�e �rst set of experiments concerns selection of a suitable granu-

larity д for the spatial grid. In Fig. 8, we plot average processing

cost per query at each execution cycle τ , i.e., for each fresh batch of

object updates. One test involved objects at a �xed uncertainty level

σ = 100m, whereas a second test allowed objects to choose their

uncertainty level randomly from Σ at each τ . Clearly, execution

cost soars for either too coarse or too �ne partitioning per dimen-

sion. In coarser subdivisions, each grid cell generally indexes a

larger number of objects that need inspection, incurring signi�cant

overhead. But too �ne partitionings also result to poor execution

time and more expensive maintenance cost, as each uncertainty

Table 2: Experiment parameters
Grid granularity д per axis 100, 250, 500, 1000, 1500, 2000

Uncertainty levels Σ (meters) { 25, 50, 75, 100, 125, 150, 175, 200 }
Elementary box side δ (meters) 15, 25, 37.5

Number k of nearest neighbors 1, 2, 3, 4, 5, 10, 20

Cuto� threshold θ 0.5, 0.67, 0.75, 0.85, 0.9, 0.99

�resholds Θ used in bounds { 0.6, 0.7, 0.8, 0.9 }

region covers a larger number of cells; so, the termination condition

in Algorithm 1 is delayed. Hence, in the sequel, we �x д = 500 for

this application se�ing. �is yields the best performance at any

uncertainty level, o�ering a good trade-o� between e�ciency in

searching and reduced cost for grid maintenance.

Next, we study the e�ect of uncertainty levels in performance.

In each test, we �x σ at a speci�c value, so all moving objects

have identical uncertainty. As Fig. 9a illustrates, the larger the σ ,

the more it takes to evaluate a query; indeed, more objects need

inspection since their uncertainty regions have wider spread and

thus cover more grid cells. Besides, higher uncertainty of objects

also increases the cost of probing the respective veri�ers, since they

contain many more elementary boxes. Execution time for δ = 25m

is almost halved compared with δ = 15m, since elementary boxes

get bigger and thus probing of veri�ers takes less time.

Figure 9b displays the total amount of objects in visited cells

also for various σ . Of these candidates, the vast majority gets

pruned thanks to the guards employed at each uncertainty level.

Pruning via precomputed bounds regarding least box counts by

certain distance ranges is rather weak, as all objects have the same

σ , thus the pruning rule loses its utility. In particular, list Q will

contain objects that are close to the focal point and have uncertainty

regions of the same size, yielding the same box counts. Few objects

can be pruned by this rule, as the box count in their bound most of

the times cannot exceed that of the currently qualifying kθNN in

Q . Objects that remain a�er pruning are those requiring probing

against their respective veri�ers. So, it is important that only a

very small percentage really entails that costly operation; this test

shows that pruning works adequately (especially with the guards),

and costly traversals are avoided when possible. Also note that the

number of frames checked in the grid is limited; thus, a relatively

small number of grid cells will be visited. �at explains why this

number (the line plot) �uctuates similarly with the total number

of objects being checked (the bar plot). Note that local minima are

observed at σ = 75m. A possible reason might be that uncertainty

regions of this magnitude �t be�er to the chosen grid granularity,

so the termination condition (involving MINDIST distances from

cells) is reached just in time without need to visit extra grid frames.

We also conducted tests with varying thresholds θ (Fig. 10). Gen-

erally, when θ is high, query execution time increases. �is is

because validation of each object asking for its veri�er to be probed

becomes more expensive, as more boxes must be traversed. How-

ever, note that execution also takes slightly longer for thresholds

less than 60%; this is because there is no precomputed bound for
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Figure 11: E�ect of varying k

such θ that can be used in pruning (Section 4.5). Furthermore,

when query threshold θ is very close to a threshold θB in a bound

(e.g., θ = 75%,θB = 70%), then we expect such pruning to be more

successful, as their box counts will be similar due to discretization.

In contrast, when θ deviates noticeably from its respective θB (e.g.

θ = 99%,θB = 90%), bounds are of li�le help in pruning. In case

that query threshold θ coincides exactly to a θB (e.g., θB = 90%),

execution time drops to less than 1msec per query, as practically the

bound su�ces to directly provide all results. Again, cost diminishes

with coarser resolutions in elementary boxes (e.g., at δ = 37.5m), as

they get bigger in size and by inspecting fewer of them the method

can fast surpass threshold θ in cumulative probability.

Of course, the number of k objects being searched as NNs also

plays an important role in performance as Fig. 11a testi�es. As

expected, query execution takes longer with increasing k , as more

grid cells may be reached around the focal point, so more objects

need be checked and occasionally probed in the veri�ers. Note

that this increase is smooth for elementary boxes of greater size

(i.e., larger box side δ ), and the algorithm scales be�er as probing

veri�ers is much cheaper, since these contain less boxes. Traversing

those veri�ers is fast, hence execution time decreases.

Concerning the number of objects examined per query (Fig. 11b),

again we observe that very few objects need probing in veri�ers,

thanks to pruning. As already noted, guards are particularly e�ec-

tive in discarding irrelevant candidates. It is no wonder that the

total count of objects increases sublinearly with k . �is happens

because a similar number of grid cells may be visited for similar k
values, and all objects indexed therein need examination.

5.3 �ality of Answers
In order to assess the quality of returnedkθNN results for all queries,

we have conducted exhaustive Monte-Carlo simulations, but only

at indicative timestamps due to their excessive cost. �en, we

compared their answers with those o�ered by our approximation

method, allowing more than k = 5 results in case of ties. As

mentioned in Section 4.4, false negatives (FN) and false positives

(FP) may occur due to the biased estimations by discretized veri�ers

and their �xed box resolution. In Fig. 12, we plot the number of

queries that received up to 5 FNs or FPs at timestamp τ = 100.

In this breakdown, with green bar we indicate queries with fully

matching results, i.e., the approximate kθNN answer is identical to

that from Monte-Carlo, so there are zero FNs and FPs. Of course,

discretization of veri�ers in�uences the amount of erroneous results.

With boxes ofδ = 25m, it appears that slightly more correct answers
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Figure 12: �alitative results for k = 5

are returned; this is simply because there are less cases with multiple

objects ranked as the 5
th

NN. Ties in the resulting ranks also explain

the small �uctuations in the number of correct answers. In general,

more than 60% of the queries have no wrong or missing answers

at all; and if we tolerate at most one FP or FN, then at least 80%

of the queries can get a fair response. Concerning ranking of the

k returned answers (plots not shown in the interest of space), we

observed that about 40% of results are emi�ed with exactly the

same rank as indicated by Monte-Carlo. Overall, given the wide

variety in the uncertainty of objects, this method seems capable of

providing results of tolerable quality; considering the prohibitive

cost of numerical methods, such a concession in the quality of

results can be a reasonable trade-o� for real-time monitoring. In

the future, we plan to improve this framework in order to provide

quality guarantees for a given box resolution in veri�ers.

6 RELATEDWORK
Spatial queries over objects of existential or locational uncertainty [2]

issue each answer with a presumed probability. Regarding loca-
tional uncertainty, there are probabilistic variants for range search

[16], similarity search [5], moving range kNN queries [12], reverse

kNN queries [4, 7], Voronoi-based NN search [23], and more.

Speci�cally for a probabilistic kNN query, results are not just

the k objects likely to be closest to the query point, but also the

probability of each one to qualify as NN. For continuous pdf, [5]

introduced a pruning �lter estimating the probability of dominance

between objects; such approximation can be further improved with

�lter and re�nement. �is conservative rule was tested for several

spatial query types, including probabilistic threshold kNN search in

databases. Such kNN queries were also speci�ed in [8] for searching

in databases that store uncertain objects of some continuous pdf.

�e answer set consists of subsets of k objects each, and each subset

has probability above the given threshold. At a �ltering stage, the

search space is pruned by spatial and probabilistic criteria. Next,

at re�nement, results are veri�ed by upper and lower bounds of

joint probability of the candidate subsets, excluding those that

certainly lie beyond the threshold. In another approach also in

spatial databases [11], a kNN query was applied against uncertain

objects, each represented by a set of discrete Monte-Carlo samples.

To improve performance, samples were clustered and then indexed

in an R-tree. Our work di�ers because our approximate answers

return only a set of k most probable NNs. Also, we allow frequent

and arbitrary updates in either objects or queries, and no such index
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can be e�ectively maintained over mutable pdf of objects.

�e kNN search algorithms in [18] consider o�ine and online

queries on objects whose historical trajectories are known, but each

location is uncertain and modeled by a uniform circular region of

�xed radius per object. Such queries return the set of all possible

kNNs at each time interval. Regarding uncertain trajectories stored

in a database, the geometric approach for range and NN search in

[20] applies 3-D cylinders enclosing each segment. In contrast, our

focus is on streaming uncertain locations and not trajectories; and

unlike their simpli�ed uniform model, online treatment of numer-

ous moving Gaussians is computationally far more demanding.

�e approach in [1, 2] is theoretical and provides approximation

algorithms and bounds speci�cally for 1-NN search over objects

with arbitrary pdf. In [1] the goal is to �nd the object that minimizes

the expected distance from a query point under di�erent distance

measures. In [2] a randomized, output-sensitive algorithm employs

Voronoi diagrams for computing all objects that are NNs of a query

point with nonzero probability. Probability of an object to be NN is

estimated with error guarantees, essentially approximating a con-

tinuous pdf by a discrete one. But, neither is it straightforward how

such methods can be practically applied over streaming uncertainty

updates nor their extensions to search for k > 1 NNs.

With respect to static multi-dimensional objects, U-tree [19] is a

generic index for arbitrary pdf using probabilistically constrained

regions to prune or validate an object. �e tree index in [13] em-

ploys adaptive, piecewise-linear approximations of arbitrary pdf

and can answer range as well as a variant of kNN queries without

thresholds. �e Gauss-tree proposed in [6] is an extension of the

R-tree speci�cally over Gaussians. Instead of spatial coordinates, it

models means and variances for disk-based data and can return the

k most probable objects inside a given query range. In a streaming

context with dynamic updates from Gaussian objects, the frame-

work in [16] makes use of probabilistic veri�ers when evaluating

range queries with a cuto� threshold so as to provide approximate

answers with quality guarantees as early as possible. Although our

discretization of uncertainty regions follows a similar pa�ern, in

our case the elementary boxes have always the same size in order

to provide a combined probabilistic and distance measure about the

proximity of objects to a query point. Our work is also distinct from

privacy-aware query processing like [14], where user locations are

cloaked into rectilinear areas, but without any notion of probability

distribution therein. To the best of our knowledge, ours is the �rst

work on probabilistic kNN search over moving Bivariate Gaussians

with frequent, dynamic updates in their uncertainty characteristics.

7 CONCLUSIONS
In this work, we considered probabilistic k-nearest neighbor queries

over numerous uncertain moving objects with Bivariate Gaussian

locations. Due to frequent updates and varying degrees of uncer-

tainty amongst objects, we introduced a discretization scheme to

quickly estimate proximity of a Gaussian pdf to the query point,

o�ering a probability measure for their comparison. We devised

pruning criteria to eagerly discard irrelevant candidates in order

to get the qualifying ones fast. Experiments over synthetic data

under diverse query speci�cations con�rm that this technique can

provide approximate results of good quality in a timely fashion.
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